Menu Close

p-x-1-x-1-2x-1-3x-1-14x-1-15x-the-absolute-value-of-the-coefficient-of-the-x-2-in-the-expression-




Question Number 179777 by luciferit last updated on 02/Nov/22
p(x)=(1−x)(1+2x)(1−3x)....(1+14x)(1−15x)    the absolute value of the coefficient of the x^2  in the expression?
p(x)=(1x)(1+2x)(13x).(1+14x)(115x)theabsolutevalueofthecoefficientofthex2intheexpression?
Answered by mr W last updated on 02/Nov/22
p(x)=Π_(k=1) ^(15) [1+(−1)^k kx]  coef. of x^2 :  (1/2)Σ_(k=1) ^(15) {(−1)^k kΣ_(r=1_(r≠k) ) ^(15) (−1)^r r}  =(1/2)Σ_(k=1) ^(15) {(−1)^k kΣ_(r=1) ^(15) (−1)^r r−(−1)^(2k) k^2 }  =(1/2){(Σ_(r=1) ^(15) (−1)^r r)^2 −Σ_(k=1) ^(15) k^2 }  =(1/2){[2+4+8+...+14−(1+3+5+...+15)]^2 −((15×(15+1)×(2×15+1))/6)}  =(1/2){[((7×16)/2)−((8×16)/2)]^2 −((15×16×31)/6)}  =−588  ∣coef. of x^2 ∣=588
p(x)=15k=1[1+(1)kkx]coef.ofx2:1215k=1{(1)kk15r=1rk(1)rr}=1215k=1{(1)kk15r=1(1)rr(1)2kk2}=12{(15r=1(1)rr)215k=1k2}=12{[2+4+8++14(1+3+5++15)]215×(15+1)×(2×15+1)6}=12{[7×1628×162]215×16×316}=588coef.ofx2∣=588

Leave a Reply

Your email address will not be published. Required fields are marked *