Menu Close

p-x-1-x-1-2x-1-3x-1-15x-find-the-coefficient-of-the-x-3-term-in-the-expansion-




Question Number 179890 by mr W last updated on 03/Nov/22
p(x)=(1−x)(1+2x)(1−3x)....(1−15x)    find the coefficient of the x^3  term  in the expansion.
p(x)=(1x)(1+2x)(13x).(115x)findthecoefficientofthex3termintheexpansion.
Commented by mr W last updated on 03/Nov/22
adapted from Q179777
adaptedfromQ179777
Answered by mr W last updated on 04/Nov/22
Method II  we need these values later:  Σ_(k=1) ^(15) (−1)^k k=−(1+3+5+...+15)+(2+4+...+14)          =−((8×16)/2)+((7×16)/2)=−8  Σ_(k=1) ^(15) k^2 =1^2 +2^2 +...+15^2           =((15×(15+1)(2×15+1))/6)=1240  Σ_(k=1) ^(15) (−1)^k k^3 =Σ_(m=0) ^7 [−(2m+1)^3 +(2m)^3 ]           =Σ_(m=0) ^7 [−3(2m)^2 −3(2m)−1]           =−Σ_(m=0) ^7 [12m^2 +6m+1]           =−[12×((7×(7+1)×(2×7+1))/6)+6×((7×8)/2)+8]           =−1856    as we have calculated in an other  question the coef. of x^2  in p(x) is   −588.    the coef. of x^3  in p(x) is  (1/3)Σ_(k=1) ^(15) (−1)^k k×[coef. of x^2  in ((p(x))/(1+(−1)^k kx))]  =(1/3)Σ_(k=1) ^(15) (−1)^k k×[coef. of x^2  in {p(x)−(−1)^k kxp(x)+(−1)^(2k) k^2 x^2 p(x)−...}]  =(1/3)Σ_(k=1) ^(15) (−1)^k k×[−588−(−1)^k kΣ_(r=1) ^(15) (−1)^r r+k^2 ]  =(1/3)Σ_(k=1) ^(15) (−1)^k k×[−588+8(−1)^k k+k^2 ]  =(1/3)Σ_(k=1) ^(15) [−588(−1)^k k+8k^2 +(−1)^k k^3 ]  =(1/3)[588×8+8×1240−1856]  =(1/3)[12768]  =4256
MethodIIweneedthesevalueslater:15k=1(1)kk=(1+3+5++15)+(2+4++14)=8×162+7×162=815k=1k2=12+22++152=15×(15+1)(2×15+1)6=124015k=1(1)kk3=7m=0[(2m+1)3+(2m)3]=7m=0[3(2m)23(2m)1]=7m=0[12m2+6m+1]=[12×7×(7+1)×(2×7+1)6+6×7×82+8]=1856aswehavecalculatedinanotherquestionthecoef.ofx2inp(x)is588.thecoef.ofx3inp(x)is1315k=1(1)kk×[coef.ofx2inp(x)1+(1)kkx]=1315k=1(1)kk×[coef.ofx2in{p(x)(1)kkxp(x)+(1)2kk2x2p(x)}]=1315k=1(1)kk×[588(1)kk15r=1(1)rr+k2]=1315k=1(1)kk×[588+8(1)kk+k2]=1315k=1[588(1)kk+8k2+(1)kk3]=13[588×8+8×12401856]=13[12768]=4256
Commented by mr W last updated on 04/Nov/22
verification of the answer:
verificationoftheanswer:
Commented by mr W last updated on 04/Nov/22
Answered by mr W last updated on 04/Nov/22
Method I  basically we just calculate the sum  of all possible products from a,b,c  with a,b,c =(−1,2,−3,4,...,14,−15)  and a≠b≠c.  let a=(−1)^p p, b=(−1)^q q, c=(−1)^r r  ΣΣΣabc  =Σ_(p=1) ^(15) Σ_(q=p+1) ^(15) Σ_(r=q+1) ^(15) (−1)^(p+q+r) pqr  =4256
MethodIbasicallywejustcalculatethesumofallpossibleproductsfroma,b,cwitha,b,c=(1,2,3,4,,14,15)andabc.leta=(1)pp,b=(1)qq,c=(1)rrΣΣΣabc=15p=115q=p+115r=q+1(1)p+q+rpqr=4256
Commented by mr W last updated on 04/Nov/22
Answered by Peace last updated on 05/Nov/22
p(x)=Σ_(n=0) ^(15) a_n x^n   p(x)=Σ_(k=0) ^(15) ((p^((k)) (0))/(k!))x^k   we want ((p^3 (0))/6)  let ε >0 enough small such p(x)>0 ∀x∈[−ε,ε]  is possible p∈R_(15) [X] Continus and p(0)=1>0  f(x)=ln(p),=Σln(1+k(−1)^k x)  f′=((p′)/p)=Σ((k(−1)^k )/(1+k(−1)^k x))  f′′=((p′′)/p)−((p′^2 )/p^2 )=−Σ(k^2 /((1+k(−1)^k x)^2 ))  f′′′=((p′′′)/p)−((p′p′′)/p^2 )−((2p′′p′p^2 −2p′^3 p)/p^4 )=2Σ((k^3 (−1)^k )/((1+k(−1)^k x)^3 ))  p(0)=1  f′(0)=Σk(−1)^k =−8  f′′(0)=−Σk^2 =((−n(n+1)(2n+1))/6)=−40.31=−1240  f′′′(0)=2Σ(−1)^k k^3 =2.−1856=−3712  ((p′(0))/(p(0)))=−8⇒p′(0)=−8  ((p′′(0))/(p(0)))−((p′^2 (0))/(p^2 (0)))=−1240  ⇒p′′(0)=−1240+64=−1176  (3)..p′′′(0)−8.1176−(2.1176.8+1024)=−3712  p^(′′′) (0)−24.1176−1024=−3712  p′′′(0)=25536  ((p^((3)) (0))/6)=4256
p(x)=15n=0anxnp(x)=15k=0p(k)(0)k!xkwewantp3(0)6letϵ>0enoughsmallsuchp(x)>0x[ϵ,ϵ]ispossiblepR15[X]Continusandp(0)=1>0f(x)=ln(p),=Σln(1+k(1)kx)f=pp=Σk(1)k1+k(1)kxf=ppp2p2=Σk2(1+k(1)kx)2f=ppppp22ppp22p3pp4=2Σk3(1)k(1+k(1)kx)3p(0)=1f(0)=Σk(1)k=8f(0)=Σk2=n(n+1)(2n+1)6=40.31=1240f(0)=2Σ(1)kk3=2.1856=3712p(0)p(0)=8p(0)=8p(0)p(0)p2(0)p2(0)=1240p(0)=1240+64=1176(3)..p(0)8.1176(2.1176.8+1024)=3712p(0)24.11761024=3712p(0)=25536p(3)(0)6=4256
Commented by mr W last updated on 05/Nov/22
thanks alot sir!
thanksalotsir!thanksalotsir!
Commented by mindispower last updated on 05/Nov/22
withe Pleasur have anice day
withePleasurhaveanicedaywithePleasurhaveaniceday

Leave a Reply

Your email address will not be published. Required fields are marked *