Question Number 179890 by mr W last updated on 03/Nov/22

Commented by mr W last updated on 03/Nov/22

Answered by mr W last updated on 04/Nov/22
![Method II we need these values later: Σ_(k=1) ^(15) (−1)^k k=−(1+3+5+...+15)+(2+4+...+14) =−((8×16)/2)+((7×16)/2)=−8 Σ_(k=1) ^(15) k^2 =1^2 +2^2 +...+15^2 =((15×(15+1)(2×15+1))/6)=1240 Σ_(k=1) ^(15) (−1)^k k^3 =Σ_(m=0) ^7 [−(2m+1)^3 +(2m)^3 ] =Σ_(m=0) ^7 [−3(2m)^2 −3(2m)−1] =−Σ_(m=0) ^7 [12m^2 +6m+1] =−[12×((7×(7+1)×(2×7+1))/6)+6×((7×8)/2)+8] =−1856 as we have calculated in an other question the coef. of x^2 in p(x) is −588. the coef. of x^3 in p(x) is (1/3)Σ_(k=1) ^(15) (−1)^k k×[coef. of x^2 in ((p(x))/(1+(−1)^k kx))] =(1/3)Σ_(k=1) ^(15) (−1)^k k×[coef. of x^2 in {p(x)−(−1)^k kxp(x)+(−1)^(2k) k^2 x^2 p(x)−...}] =(1/3)Σ_(k=1) ^(15) (−1)^k k×[−588−(−1)^k kΣ_(r=1) ^(15) (−1)^r r+k^2 ] =(1/3)Σ_(k=1) ^(15) (−1)^k k×[−588+8(−1)^k k+k^2 ] =(1/3)Σ_(k=1) ^(15) [−588(−1)^k k+8k^2 +(−1)^k k^3 ] =(1/3)[588×8+8×1240−1856] =(1/3)[12768] =4256](https://www.tinkutara.com/question/Q179924.png)
Commented by mr W last updated on 04/Nov/22

Commented by mr W last updated on 04/Nov/22

Answered by mr W last updated on 04/Nov/22

Commented by mr W last updated on 04/Nov/22

Answered by Peace last updated on 05/Nov/22
![p(x)=Σ_(n=0) ^(15) a_n x^n p(x)=Σ_(k=0) ^(15) ((p^((k)) (0))/(k!))x^k we want ((p^3 (0))/6) let ε >0 enough small such p(x)>0 ∀x∈[−ε,ε] is possible p∈R_(15) [X] Continus and p(0)=1>0 f(x)=ln(p),=Σln(1+k(−1)^k x) f′=((p′)/p)=Σ((k(−1)^k )/(1+k(−1)^k x)) f′′=((p′′)/p)−((p′^2 )/p^2 )=−Σ(k^2 /((1+k(−1)^k x)^2 )) f′′′=((p′′′)/p)−((p′p′′)/p^2 )−((2p′′p′p^2 −2p′^3 p)/p^4 )=2Σ((k^3 (−1)^k )/((1+k(−1)^k x)^3 )) p(0)=1 f′(0)=Σk(−1)^k =−8 f′′(0)=−Σk^2 =((−n(n+1)(2n+1))/6)=−40.31=−1240 f′′′(0)=2Σ(−1)^k k^3 =2.−1856=−3712 ((p′(0))/(p(0)))=−8⇒p′(0)=−8 ((p′′(0))/(p(0)))−((p′^2 (0))/(p^2 (0)))=−1240 ⇒p′′(0)=−1240+64=−1176 (3)..p′′′(0)−8.1176−(2.1176.8+1024)=−3712 p^(′′′) (0)−24.1176−1024=−3712 p′′′(0)=25536 ((p^((3)) (0))/6)=4256](https://www.tinkutara.com/question/Q179980.png)
Commented by mr W last updated on 05/Nov/22

Commented by mindispower last updated on 05/Nov/22
