Question Number 179890 by mr W last updated on 03/Nov/22
$${p}\left({x}\right)=\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)\left(\mathrm{1}−\mathrm{3}{x}\right)….\left(\mathrm{1}−\mathrm{15}{x}\right) \\ $$$$ \\ $$$${find}\:{the}\:{coefficient}\:{of}\:{the}\:{x}^{\mathrm{3}} \:{term} \\ $$$${in}\:{the}\:{expansion}. \\ $$
Commented by mr W last updated on 03/Nov/22
$${adapted}\:{from}\:{Q}\mathrm{179777} \\ $$
Answered by mr W last updated on 04/Nov/22
$$\boldsymbol{{Method}}\:\boldsymbol{{II}} \\ $$$${we}\:{need}\:{these}\:{values}\:{later}: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {k}=−\left(\mathrm{1}+\mathrm{3}+\mathrm{5}+…+\mathrm{15}\right)+\left(\mathrm{2}+\mathrm{4}+…+\mathrm{14}\right) \\ $$$$\:\:\:\:\:\:\:\:=−\frac{\mathrm{8}×\mathrm{16}}{\mathrm{2}}+\frac{\mathrm{7}×\mathrm{16}}{\mathrm{2}}=−\mathrm{8} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}{k}^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +…+\mathrm{15}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{15}×\left(\mathrm{15}+\mathrm{1}\right)\left(\mathrm{2}×\mathrm{15}+\mathrm{1}\right)}{\mathrm{6}}=\mathrm{1240} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {k}^{\mathrm{3}} =\underset{{m}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\left[−\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{3}} +\left(\mathrm{2}{m}\right)^{\mathrm{3}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:=\underset{{m}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\left[−\mathrm{3}\left(\mathrm{2}{m}\right)^{\mathrm{2}} −\mathrm{3}\left(\mathrm{2}{m}\right)−\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:=−\underset{{m}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\left[\mathrm{12}{m}^{\mathrm{2}} +\mathrm{6}{m}+\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:=−\left[\mathrm{12}×\frac{\mathrm{7}×\left(\mathrm{7}+\mathrm{1}\right)×\left(\mathrm{2}×\mathrm{7}+\mathrm{1}\right)}{\mathrm{6}}+\mathrm{6}×\frac{\mathrm{7}×\mathrm{8}}{\mathrm{2}}+\mathrm{8}\right] \\ $$$$\:\:\:\:\:\:\:\:\:=−\mathrm{1856} \\ $$$$ \\ $$$${as}\:{we}\:{have}\:{calculated}\:{in}\:{an}\:{other} \\ $$$${question}\:{the}\:{coef}.\:{of}\:{x}^{\mathrm{2}} \:{in}\:{p}\left({x}\right)\:{is}\: \\ $$$$−\mathrm{588}. \\ $$$$ \\ $$$${the}\:{coef}.\:{of}\:{x}^{\mathrm{3}} \:{in}\:{p}\left({x}\right)\:{is} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {k}×\left[{coef}.\:{of}\:{x}^{\mathrm{2}} \:{in}\:\frac{{p}\left({x}\right)}{\mathrm{1}+\left(−\mathrm{1}\right)^{{k}} {kx}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {k}×\left[{coef}.\:{of}\:{x}^{\mathrm{2}} \:{in}\:\left\{{p}\left({x}\right)−\left(−\mathrm{1}\right)^{{k}} {kxp}\left({x}\right)+\left(−\mathrm{1}\right)^{\mathrm{2}{k}} {k}^{\mathrm{2}} {x}^{\mathrm{2}} {p}\left({x}\right)−…\right\}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {k}×\left[−\mathrm{588}−\left(−\mathrm{1}\right)^{{k}} {k}\underset{{r}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{r}} {r}+{k}^{\mathrm{2}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {k}×\left[−\mathrm{588}+\mathrm{8}\left(−\mathrm{1}\right)^{{k}} {k}+{k}^{\mathrm{2}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left[−\mathrm{588}\left(−\mathrm{1}\right)^{{k}} {k}+\mathrm{8}{k}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{{k}} {k}^{\mathrm{3}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{588}×\mathrm{8}+\mathrm{8}×\mathrm{1240}−\mathrm{1856}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{12768}\right] \\ $$$$=\mathrm{4256} \\ $$
Commented by mr W last updated on 04/Nov/22
$${verification}\:{of}\:{the}\:{answer}: \\ $$
Commented by mr W last updated on 04/Nov/22
Answered by mr W last updated on 04/Nov/22
$$\boldsymbol{{Method}}\:\boldsymbol{{I}} \\ $$$${basically}\:{we}\:{just}\:{calculate}\:{the}\:{sum} \\ $$$${of}\:{all}\:{possible}\:{products}\:{from}\:{a},{b},{c} \\ $$$${with}\:{a},{b},{c}\:=\left(−\mathrm{1},\mathrm{2},−\mathrm{3},\mathrm{4},…,\mathrm{14},−\mathrm{15}\right) \\ $$$${and}\:{a}\neq{b}\neq{c}. \\ $$$${let}\:{a}=\left(−\mathrm{1}\right)^{{p}} {p},\:{b}=\left(−\mathrm{1}\right)^{{q}} {q},\:{c}=\left(−\mathrm{1}\right)^{{r}} {r} \\ $$$$\Sigma\Sigma\Sigma{abc} \\ $$$$=\underset{{p}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\underset{{q}={p}+\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\underset{{r}={q}+\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(−\mathrm{1}\right)^{{p}+{q}+{r}} {pqr} \\ $$$$=\mathrm{4256} \\ $$
Commented by mr W last updated on 04/Nov/22
Answered by Peace last updated on 05/Nov/22
$${p}\left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\mathrm{15}} {\sum}}{a}_{{n}} {x}^{{n}} \\ $$$${p}\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{15}} {\sum}}\frac{{p}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}{x}^{{k}} \:\:{we}\:{want}\:\frac{{p}^{\mathrm{3}} \left(\mathrm{0}\right)}{\mathrm{6}} \\ $$$${let}\:\epsilon\:>\mathrm{0}\:{enough}\:{small}\:{such}\:{p}\left({x}\right)>\mathrm{0}\:\forall{x}\in\left[−\epsilon,\epsilon\right] \\ $$$${is}\:{possible}\:{p}\in\mathbb{R}_{\mathrm{15}} \left[{X}\right]\:{Continus}\:{and}\:{p}\left(\mathrm{0}\right)=\mathrm{1}>\mathrm{0} \\ $$$${f}\left({x}\right)={ln}\left({p}\right),=\Sigma{ln}\left(\mathrm{1}+{k}\left(−\mathrm{1}\right)^{{k}} {x}\right) \\ $$$${f}'=\frac{{p}'}{{p}}=\Sigma\frac{{k}\left(−\mathrm{1}\right)^{{k}} }{\mathrm{1}+{k}\left(−\mathrm{1}\right)^{{k}} {x}} \\ $$$${f}''=\frac{{p}''}{{p}}−\frac{{p}'^{\mathrm{2}} }{{p}^{\mathrm{2}} }=−\Sigma\frac{{k}^{\mathrm{2}} }{\left(\mathrm{1}+{k}\left(−\mathrm{1}\right)^{{k}} {x}\right)^{\mathrm{2}} } \\ $$$${f}'''=\frac{{p}'''}{{p}}−\frac{{p}'{p}''}{{p}^{\mathrm{2}} }−\frac{\mathrm{2}{p}''{p}'{p}^{\mathrm{2}} −\mathrm{2}{p}'^{\mathrm{3}} {p}}{{p}^{\mathrm{4}} }=\mathrm{2}\Sigma\frac{{k}^{\mathrm{3}} \left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{1}+{k}\left(−\mathrm{1}\right)^{{k}} {x}\right)^{\mathrm{3}} } \\ $$$${p}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}'\left(\mathrm{0}\right)=\Sigma{k}\left(−\mathrm{1}\right)^{{k}} =−\mathrm{8} \\ $$$${f}''\left(\mathrm{0}\right)=−\Sigma{k}^{\mathrm{2}} =\frac{−{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}=−\mathrm{40}.\mathrm{31}=−\mathrm{1240} \\ $$$${f}'''\left(\mathrm{0}\right)=\mathrm{2}\Sigma\left(−\mathrm{1}\right)^{{k}} {k}^{\mathrm{3}} =\mathrm{2}.−\mathrm{1856}=−\mathrm{3712} \\ $$$$\frac{{p}'\left(\mathrm{0}\right)}{{p}\left(\mathrm{0}\right)}=−\mathrm{8}\Rightarrow{p}'\left(\mathrm{0}\right)=−\mathrm{8} \\ $$$$\frac{{p}''\left(\mathrm{0}\right)}{{p}\left(\mathrm{0}\right)}−\frac{{p}'^{\mathrm{2}} \left(\mathrm{0}\right)}{{p}^{\mathrm{2}} \left(\mathrm{0}\right)}=−\mathrm{1240} \\ $$$$\Rightarrow{p}''\left(\mathrm{0}\right)=−\mathrm{1240}+\mathrm{64}=−\mathrm{1176} \\ $$$$\left(\mathrm{3}\right)..{p}'''\left(\mathrm{0}\right)−\mathrm{8}.\mathrm{1176}−\left(\mathrm{2}.\mathrm{1176}.\mathrm{8}+\mathrm{1024}\right)=−\mathrm{3712} \\ $$$${p}^{'''} \left(\mathrm{0}\right)−\mathrm{24}.\mathrm{1176}−\mathrm{1024}=−\mathrm{3712} \\ $$$${p}'''\left(\mathrm{0}\right)=\mathrm{25536} \\ $$$$\frac{{p}^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)}{\mathrm{6}}=\mathrm{4256} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 05/Nov/22
$${thanks}\:{alot}\:{sir}! \\ $$
Commented by mindispower last updated on 05/Nov/22
$${withe}\:{Pleasur}\:{have}\:{anice}\:{day} \\ $$