Menu Close

P-x-is-a-monic-fifth-degree-polynomial-that-satisfy-P-1-1-P-2-4-P-3-9-P-4-16-P-5-25-P-6-




Question Number 58612 by naka3546 last updated on 26/Apr/19
P(x)  is  a  monic−fifth  degree  polynomial  that satisfy      P(1)  =  1      P(2)  =  4      P(3)  =  9      P(4)  =  16      P(5)  =  25      P(6)  =  ?
$${P}\left({x}\right)\:\:{is}\:\:{a}\:\:{monic}−{fifth}\:\:{degree}\:\:{polynomial}\:\:{that}\:{satisfy} \\ $$$$\:\:\:\:{P}\left(\mathrm{1}\right)\:\:=\:\:\mathrm{1} \\ $$$$\:\:\:\:{P}\left(\mathrm{2}\right)\:\:=\:\:\mathrm{4} \\ $$$$\:\:\:\:{P}\left(\mathrm{3}\right)\:\:=\:\:\mathrm{9} \\ $$$$\:\:\:\:{P}\left(\mathrm{4}\right)\:\:=\:\:\mathrm{16} \\ $$$$\:\:\:\:{P}\left(\mathrm{5}\right)\:\:=\:\:\mathrm{25} \\ $$$$\:\:\:\:{P}\left(\mathrm{6}\right)\:\:=\:\:? \\ $$$$ \\ $$
Answered by tanmay last updated on 26/Apr/19
p(x)=(x−1)(x−2)(x−3)(x−4)(x−5)+x^2   p(6)=5×4×3×2×1+6^2          =120+36=156
$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{5}\right)+{x}^{\mathrm{2}} \\ $$$${p}\left(\mathrm{6}\right)=\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}+\mathrm{6}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:=\mathrm{120}+\mathrm{36}=\mathrm{156} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *