Menu Close

p-x-x-3-3ax-2-3a-2-1-x-a-3-a-p-2-lt-0-prove-that-2-lt-a-lt-3-




Question Number 157184 by cortano last updated on 20/Oct/21
p(x)=x^3 −3ax^2 +(3a^2 +1)x−(a^3 +a)  p(2)<0  prove that 2<a<3
$${p}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{ax}^{\mathrm{2}} +\left(\mathrm{3}{a}^{\mathrm{2}} +\mathrm{1}\right){x}−\left({a}^{\mathrm{3}} +{a}\right) \\ $$$${p}\left(\mathrm{2}\right)<\mathrm{0} \\ $$$${prove}\:{that}\:\mathrm{2}<{a}<\mathrm{3} \\ $$
Answered by ghimisi last updated on 20/Oct/21
p(x)=x^3 −3ax^2 +3a^2 x−x^3 +x−a=(x−a)^3 +x−a  p(2)<0⇒(2−a)[(2−a)^2 +1]<0⇒a>2  a<3    ??????
$${p}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} {x}−{x}^{\mathrm{3}} +{x}−{a}=\left({x}−{a}\right)^{\mathrm{3}} +{x}−{a} \\ $$$${p}\left(\mathrm{2}\right)<\mathrm{0}\Rightarrow\left(\mathrm{2}−{a}\right)\left[\left(\mathrm{2}−{a}\right)^{\mathrm{2}} +\mathrm{1}\right]<\mathrm{0}\Rightarrow{a}>\mathrm{2} \\ $$$${a}<\mathrm{3}\:\:\:\:?????? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *