Menu Close

partial-fraction-2x-2-5x-9-x-2-x-1-dx-




Question Number 20241 by tammi last updated on 24/Aug/17
partial fraction  ∫((2x^2 +5x−9)/( (√(x^2 −x+1))))dx
$${partial}\:{fraction} \\ $$$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{9}}{\:\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{dx} \\ $$
Answered by $@ty@m last updated on 25/Aug/17
=∫((2x^2 −2x+2+7x−7−4)/( (√(x^2 −x+1))))dx  =∫2(√(x^2 −x+1))dx+∫((7x−7)/( (√(x^2 −x+1))))dx−∫(4/( (√(x^2 −x+1))))dx  ...now try yourself
$$=\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}+\mathrm{7}{x}−\mathrm{7}−\mathrm{4}}{\:\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{dx} \\ $$$$=\int\mathrm{2}\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx}+\int\frac{\mathrm{7}{x}−\mathrm{7}}{\:\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{dx}−\int\frac{\mathrm{4}}{\:\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{dx} \\ $$$$…{now}\:{try}\:{yourself} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *