Menu Close

Particles-of-mass-m-1-and-m-2-m-2-gt-m-1-are-connected-by-a-light-inextensible-string-passing-over-a-smooth-fixed-pulley-initially-both-masses-hang-vertically-with-mass-m-2-at-a-height-X-ab




Question Number 119648 by aurpeyz last updated on 26/Oct/20
Particles of mass m_1  and m_2  (m_2 >m_1 )  are connected by a light inextensible  string passing over a smooth fixed   pulley. initially both masses hang  vertically with mass m_(2 ) at a height  X above the floor. if the system is   released from rest. with what speed  will mass m_2  hit the floor and the  mass m_1  will rise a further distance of   [(((m_2 −m_1 )x)/(m_1 +m_2 ))] after this occur.
$${Particles}\:{of}\:{mass}\:{m}_{\mathrm{1}} \:{and}\:{m}_{\mathrm{2}} \:\left({m}_{\mathrm{2}} >{m}_{\mathrm{1}} \right) \\ $$$${are}\:{connected}\:{by}\:{a}\:{light}\:{inextensible} \\ $$$${string}\:{passing}\:{over}\:{a}\:{smooth}\:{fixed}\: \\ $$$${pulley}.\:{initially}\:{both}\:{masses}\:{hang} \\ $$$${vertically}\:{with}\:{mass}\:{m}_{\mathrm{2}\:} {at}\:{a}\:{height} \\ $$$${X}\:{above}\:{the}\:{floor}.\:{if}\:{the}\:{system}\:{is}\: \\ $$$${released}\:{from}\:{rest}.\:{with}\:{what}\:{speed} \\ $$$${will}\:{mass}\:{m}_{\mathrm{2}} \:{hit}\:{the}\:{floor}\:{and}\:{the} \\ $$$${mass}\:{m}_{\mathrm{1}} \:{will}\:{rise}\:{a}\:{further}\:{distance}\:{of}\: \\ $$$$\left[\frac{\left({m}_{\mathrm{2}} −{m}_{\mathrm{1}} \right){x}}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }\right]\:{after}\:{this}\:{occur}. \\ $$
Commented by aurpeyz last updated on 26/Oct/20
pls help
$${pls}\:{help} \\ $$
Answered by TANMAY PANACEA last updated on 26/Oct/20
m_2 g−T=m_2 a  T−m_1 g=m_1 a  a=((g(m_2 −m_1 ))/(m_1 +m_2 ))  v^2 =0^2 +2ax  v=(√(2×((g(m_2 −m_1 ))/(m_1 +m_2 ))×x))  ⇚this is the speed  by which m_2  strike ground  pls chk
$${m}_{\mathrm{2}} {g}−{T}={m}_{\mathrm{2}} {a} \\ $$$${T}−{m}_{\mathrm{1}} {g}={m}_{\mathrm{1}} {a} \\ $$$${a}=\frac{{g}\left({m}_{\mathrm{2}} −{m}_{\mathrm{1}} \right)}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} } \\ $$$${v}^{\mathrm{2}} =\mathrm{0}^{\mathrm{2}} +\mathrm{2}{ax} \\ $$$${v}=\sqrt{\mathrm{2}×\frac{{g}\left({m}_{\mathrm{2}} −{m}_{\mathrm{1}} \right)}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }×{x}}\:\:\Lleftarrow{this}\:{is}\:{the}\:{speed} \\ $$$${by}\:{which}\:{m}_{\mathrm{2}} \:{strike}\:{ground} \\ $$$${pls}\:{chk} \\ $$$$ \\ $$
Commented by aurpeyz last updated on 28/Oct/20
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *