Menu Close

Path-of-a-projectile-as-seen-from-another-projectile-is-a-1-Straight-line-2-Parabola-3-Ellipse-4-Hyperbola-




Question Number 15961 by Tinkutara last updated on 16/Jun/17
Path of a projectile as seen from another  projectile is a  (1) Straight line  (2) Parabola  (3) Ellipse  (4) Hyperbola
Pathofaprojectileasseenfromanotherprojectileisa(1)Straightline(2)Parabola(3)Ellipse(4)Hyperbola
Commented by mrW1 last updated on 16/Jun/17
(1)
(1)
Commented by chux last updated on 16/Jun/17
please explain this sir.
pleaseexplainthissir.
Commented by mrW1 last updated on 16/Jun/17
let us say particle 1 starts Δt prior to  particle 2.     particle 1:  x_1 =u_1 (t+Δt)  y_1 =v_1 (t+Δt)−(1/2)g(t+Δt)^2   particle 2:  x_2 =u_2 t  y_2 =v_2 t−(1/2)gt^2     x′=Δx=x_2 −x_1 =(u_2 −u_1 )t−u_1 Δt  ⇒x′=Δut−u_1 Δt     ...(i)  y′=Δy=y_2 −y_1 =(v_2 −v_1 )t−v_1 Δt−(1/2)gΔt(2t+Δt)  ⇒y′=Δvt−v_1 Δt−gΔt(t+((Δt)/2))  ...(ii)  with Δu=u_2 −u_1  and Δv=v_2 −v_1     from (i):  t=((x′+u_1 Δt)/(Δu))  substituting in (ii):  y′=Δv(((x′+u_1 Δt)/(Δu)))−v_1 Δt−gΔt(((x′+u_1 Δt)/(Δu))+((Δt)/2))  ...(ii)  y′=((Δv)/(Δu))x′+((ΔvΔtu_1 )/(Δu))−v_1 Δt−((gΔt)/(Δu))x′−((gΔt^2 u_1 )/(Δu))−((gΔt^2 )/2)   y′=(((Δv−gΔt)/(Δu)))x′+(((ΔvΔtu_1 −ΔuΔtv_1 −gΔt^2 u_1 )/(Δu))−((gΔt^2 )/2))   ⇒y′=cx′+d with c,d=constant    that means upon t≥0, the path of   particle 2 seen from particle 1 is a straight,  no mater how different their velocities  are and whether they start at same time  or at different time.
letussayparticle1startsΔtpriortoparticle2.particle1:x1=u1(t+Δt)y1=v1(t+Δt)12g(t+Δt)2particle2:x2=u2ty2=v2t12gt2x=Δx=x2x1=(u2u1)tu1Δtx=Δutu1Δt(i)y=Δy=y2y1=(v2v1)tv1Δt12gΔt(2t+Δt)y=Δvtv1ΔtgΔt(t+Δt2)(ii)withΔu=u2u1andΔv=v2v1from(i):t=x+u1ΔtΔusubstitutingin(ii):y=Δv(x+u1ΔtΔu)v1ΔtgΔt(x+u1ΔtΔu+Δt2)(ii)y=ΔvΔux+ΔvΔtu1Δuv1ΔtgΔtΔuxgΔt2u1ΔugΔt22y=(ΔvgΔtΔu)x+(ΔvΔtu1ΔuΔtv1gΔt2u1ΔugΔt22)y=cx+dwithc,d=constantthatmeansupont0,thepathofparticle2seenfromparticle1isastraight,nomaterhowdifferenttheirvelocitiesareandwhethertheystartatsametimeoratdifferenttime.
Commented by Tinkutara last updated on 16/Jun/17
Thanks Sir!
ThanksSir!
Commented by chux last updated on 16/Jun/17
thanks a lot sir.
thanksalotsir.

Leave a Reply

Your email address will not be published. Required fields are marked *