Menu Close

Photoelectric-emission-is-observed-from-a-surface-when-lights-of-frequency-n-1-and-n-2-incident-If-the-ratio-of-maximum-kinetic-energy-in-two-cases-is-K-1-then-Assume-n-1-gt-n-2-threshold-f




Question Number 16136 by Tinkutara last updated on 18/Jun/17
Photoelectric emission is observed from  a surface when lights of frequency n_1   and n_2  incident. If the ratio of maximum  kinetic energy in two cases is K : 1  then (Assume n_1  > n_2 ) threshold  frequency is  (1) (K − 1) × (Kn_2  − n_1 )  (2) ((Kn_1  − n_2 )/(1 − K))  (3) ((K − 1)/(Kn_1  − n_2 ))  (4) ((Kn_2  − n_1 )/(K − 1))
$$\mathrm{Photoelectric}\:\mathrm{emission}\:\mathrm{is}\:\mathrm{observed}\:\mathrm{from} \\ $$$$\mathrm{a}\:\mathrm{surface}\:\mathrm{when}\:\mathrm{lights}\:\mathrm{of}\:\mathrm{frequency}\:{n}_{\mathrm{1}} \\ $$$$\mathrm{and}\:{n}_{\mathrm{2}} \:\mathrm{incident}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{maximum} \\ $$$$\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{in}\:\mathrm{two}\:\mathrm{cases}\:\mathrm{is}\:\mathrm{K}\::\:\mathrm{1} \\ $$$$\mathrm{then}\:\left(\mathrm{Assume}\:{n}_{\mathrm{1}} \:>\:{n}_{\mathrm{2}} \right)\:\mathrm{threshold} \\ $$$$\mathrm{frequency}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{K}\:−\:\mathrm{1}\right)\:×\:\left(\mathrm{K}{n}_{\mathrm{2}} \:−\:{n}_{\mathrm{1}} \right) \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{K}{n}_{\mathrm{1}} \:−\:{n}_{\mathrm{2}} }{\mathrm{1}\:−\:\mathrm{K}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{K}\:−\:\mathrm{1}}{\mathrm{K}{n}_{\mathrm{1}} \:−\:{n}_{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{K}{n}_{\mathrm{2}} \:−\:{n}_{\mathrm{1}} }{\mathrm{K}\:−\:\mathrm{1}} \\ $$
Answered by ajfour last updated on 18/Jun/17
   hn_1 −hn_0 =(K.E.)_(max,1)      hn_2 −hn_0 =(K.E.)_(max,2)   so,   ((n_1 −n_0 )/(n_2 −n_0 )) = (K/1)    n_1 −n_0 =Kn_2 −Kn_0      n_0 = ((Kn_2 −n_1 )/(K−1)) .
$$\:\:\:{hn}_{\mathrm{1}} −{hn}_{\mathrm{0}} =\left({K}.{E}.\right)_{{max},\mathrm{1}} \\ $$$$\:\:\:{hn}_{\mathrm{2}} −{hn}_{\mathrm{0}} =\left({K}.{E}.\right)_{{max},\mathrm{2}} \\ $$$${so},\:\:\:\frac{{n}_{\mathrm{1}} −{n}_{\mathrm{0}} }{{n}_{\mathrm{2}} −{n}_{\mathrm{0}} }\:=\:\frac{{K}}{\mathrm{1}} \\ $$$$\:\:{n}_{\mathrm{1}} −{n}_{\mathrm{0}} ={Kn}_{\mathrm{2}} −{Kn}_{\mathrm{0}} \\ $$$$\:\:\:{n}_{\mathrm{0}} =\:\frac{{Kn}_{\mathrm{2}} −{n}_{\mathrm{1}} }{{K}−\mathrm{1}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *