Menu Close

pi-2-pi-2-cos-x-cos-3-x-dx-




Question Number 91479 by Zainal Arifin last updated on 01/May/20
 ∫_(−π/2 ) ^(π/2)  (√(cos x−cos^3 x)) dx=...
π/2π/2cosxcos3xdx=
Commented by jagoll last updated on 01/May/20
(√(cos x(1−cos^2 x))) = (√(cos x)) (√(sin^2 x))  ∫_(−(π/2)) ^0 (√(cos x)) (−sin x) dx + ∫_0 ^(π/2) (√(cos x)) sin x dx  now easy to solve
cosx(1cos2x)=cosxsin2x0π2cosx(sinx)dx+π20cosxsinxdxnoweasytosolve
Commented by Zainal Arifin last updated on 01/May/20
Ok. thanks
Ok.thanks
Commented by Prithwish Sen 1 last updated on 01/May/20
∫(√(cosx)) sinx dx  put cosx =t^2 ⇒−sinxdx=2tdt   = −∫t.2t.dt = −(2/3).(cosx)^(3/2)   ∫_(−(π/2)) ^(π/2) (√(cosx)).sinxdx = 2∫_0 ^(π/2) (√(cosx)).sinxdx=2[−(2/3)(cosx)^(2/3) ]_0 ^(π/2)   =2.[−(0−(2/3))]=(4/3)   please check.
cosxsinxdxputcosx=t2sinxdx=2tdt=t.2t.dt=23.(cosx)32π2π2cosx.sinxdx=20π2cosx.sinxdx=2[23(cosx)23]0π2=2.[(023)]=43pleasecheck.
Commented by jagoll last updated on 01/May/20
(√(sin^2 x )) ≠ sin x  (√(sin^2 x)) = ∣sin x∣
sin2xsinxsin2x=sinx
Answered by john santu last updated on 01/May/20
Commented by Prithwish Sen 1 last updated on 01/May/20
I think  in  0≤x≤(π/2)   sinx and cosx≥ 0  sorry fix it.
Ithinkin0xπ2sinxandcosx0sorryfixit.
Commented by jagoll last updated on 01/May/20
0≤x≥(π/2) = 0≤x≤(π/2) ?
0xπ2=0xπ2?
Commented by Prithwish Sen 1 last updated on 01/May/20
Thank you sir.
Thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *