Menu Close

pi-2-pi-2-sin-2x-1-2-x-dx-




Question Number 87977 by Ar Brandon last updated on 07/Apr/20
∫_(−(π/2)) ^(π/2) ((sin 2x)/(1+2^x ))dx
π2π2sin2x1+2xdx
Commented by abdomathmax last updated on 08/Apr/20
at form of serie  ∫_(−(π/2)) ^(π/2)  ((sin(2x))/(1+2^x ))dx =∫_(−(π/2)) ^(π/2)  ((2^(−x) sin(2x))/(1+2^(−x) ))dx  =∫_(−(π/2)) ^(π/2)  2^(−x) sin(2x)Σ_(n=0) ^∞  (−1)^n  2^(−nx)  dx  =Σ_(n=0) ^∞ (−1)^n  ∫_(−(π/2)) ^(π/2)  2^(−(n+1)x)  sin(2x)dx  but ∫_(−(π/2)) ^(π/2)  2^(−(n+1)x)  sin(2x)dx  =Im(∫_(−(π/2)) ^(π/2)  2^(−(n+1)x)  e^(2ix)  dx)  ∫_(−(π/2)) ^(π/2)  e^(−(n+1)xln2 +2ix)  dx  =∫_(−(π/2)) ^(π/2)  e^((2i−(n+1)ln2)x)  dx  =[(1/(2i−(n+1)ln2)) e^((2i−(n+1)ln2)x) ]_(−(π/2)) ^(π/2)   =(1/(2i−(n+1)ln2)){ −e^(−(n+1)ln2(π/2)) −e^((n+1)ln2(π/2)) }  =(((n+1)ln2−2i)/((n+1)^2 ln^2 2+4)){ e^((π/2)(n+1)ln2)  +e^(−(π/2)(n+1)ln2) } ⇒  Im(...) =−(2/((n+1)^2 ln^2 2+4)) ×2 ch((π/2)(n+1)ln2) ⇒  ⇒  I =4Σ_(n=0) ^∞   (((−1)^(n+1) )/((n+1)^2 ln^2 2 +4))×ch((π/2)(n+1)ln2)
atformofserieπ2π2sin(2x)1+2xdx=π2π22xsin(2x)1+2xdx=π2π22xsin(2x)n=0(1)n2nxdx=n=0(1)nπ2π22(n+1)xsin(2x)dxbutπ2π22(n+1)xsin(2x)dx=Im(π2π22(n+1)xe2ixdx)π2π2e(n+1)xln2+2ixdx=π2π2e(2i(n+1)ln2)xdx=[12i(n+1)ln2e(2i(n+1)ln2)x]π2π2=12i(n+1)ln2{e(n+1)ln2π2e(n+1)ln2π2}=(n+1)ln22i(n+1)2ln22+4{eπ2(n+1)ln2+eπ2(n+1)ln2}Im()=2(n+1)2ln22+4×2ch(π2(n+1)ln2)I=4n=0(1)n+1(n+1)2ln22+4×ch(π2(n+1)ln2)
Commented by Ar Brandon last updated on 08/Apr/20
Amazing!!!!!
Amazing!!!!!

Leave a Reply

Your email address will not be published. Required fields are marked *