Menu Close

pi-2-pi-2-x-2-ln-pi-x-pi-x-cos-x-dx-




Question Number 121174 by benjo_mathlover last updated on 05/Nov/20
∫_(−π/2) ^(π/2) (x^2 +ln (((π+x)/(π−x))))cos x dx ?
π/2π/2(x2+ln(π+xπx))cosxdx?
Answered by TANMAY PANACEA last updated on 05/Nov/20
I=∫_((−π)/2) ^(π/2) { (0−x)^2 +ln(((π+(0−x))/(π−(0−x))))}cos(0−x) dx  I=∫_((−π)/2) ^(π/2) { x^2 +ln(((π−x)/(π+x)))}cosx dx  2I=∫_((−π)/2) ^(π/2) 2x^2 ×cosx+cosx{ln(((π+x)/(π−x)))+ln(((π−x)/(π+x)))}dx  2I=∫_((−π)/2) ^(π/2) 2x^2 ×cosx+cosx×ln1  dx  I=∫_((−π)/2) ^(π/2) x^2 cosx dx  J=∫x^2 e^(ix) dx  =x^2 (e^(ix) /i)−∫2x×(e^(ix) /i)dx  =((x^2 e^(ix) ×i)/(−1))+2i∫xe^(ix) dx  =−ix^2 (cosx+isinx)+2i[x×(e^(ix) /i)−∫(e^(ix) /i)dx]  =−ix^2 (cosx+isinx)+2x(cosx+isinx)−2×(e^(ix) /i)  =(−ix^2 cosx)+x^2 sinx+2xcosx+i×2xcosx+2i(cosx+isinx)  =real part +im part    real psrt=(x^2 sinx+2xcosx−2sinx)  I=∣x^2 sinx+2xcosx−2sinx∣_((−π)/2) ^(π/2)   =(π^2 /4)×1−(π^2 /4)×(−1)+2×(π/2)×0−2×((−π)/2)×0−2(1+1)  =(π^2 /2)−4
I=π2π2{(0x)2+ln(π+(0x)π(0x))}cos(0x)dxI=π2π2{x2+ln(πxπ+x)}cosxdx2I=π2π22x2×cosx+cosx{ln(π+xπx)+ln(πxπ+x)}dx2I=π2π22x2×cosx+cosx×ln1dxI=π2π2x2cosxdxJ=x2eixdx=x2eixi2x×eixidx=x2eix×i1+2ixeixdx=ix2(cosx+isinx)+2i[x×eixieixidx]=ix2(cosx+isinx)+2x(cosx+isinx)2×eixi=(ix2cosx)+x2sinx+2xcosx+i×2xcosx+2i(cosx+isinx)=realpart+impartrealpsrt=(x2sinx+2xcosx2sinx)I=∣x2sinx+2xcosx2sinxπ2π2=π24×1π24×(1)+2×π2×02×π2×02(1+1)=π224
Commented by TANMAY PANACEA last updated on 05/Nov/20
yes yes i could not see...
yesyesicouldnotsee
Commented by benjo_mathlover last updated on 06/Nov/20
yess...
yess
Answered by Ar Brandon last updated on 05/Nov/20
I=∫_(−(π/2)) ^(π/2) {x^2 +ln(((π+x)/(π−x)))}cosxdx  I=∫_(−(π/2)) ^(π/2) {x^2 +ln(((π−x)/(π+x)))}cosxdx  I+I=∫_(−(π/2)) ^(π/2) {2x^2 +ln(((π+x)/(π−x)))+ln(((π−x)/(π+x)))}cosxdx  ⇒2I=∫_(−(π/2)) ^(π/2) 2x^2 cosxdx=2[x^2 ∫cosxdx−∫{(dx^2 /dx)∙∫cosxdx}]_(−(π/2)) ^(π/2)   ⇒I=[x^2 sinx−2∫xsinxdx]_(−(π/2)) ^(π/2)           =[x^2 sinx+2{xcosx−∫cosxdx}]_(−(π/2)) ^(π/2)           =[x^2 sinx+2xcosx−2sinx]_(−(π/2)) ^(π/2) ={(π^2 /4)−2}+{(π^2 /4)−2}          =(π^2 /2)−4
I=π2π2{x2+ln(π+xπx)}cosxdxI=π2π2{x2+ln(πxπ+x)}cosxdxI+I=π2π2{2x2+ln(π+xπx)+ln(πxπ+x)}cosxdx2I=π2π22x2cosxdx=2[x2cosxdx{dx2dxcosxdx}]π2π2I=[x2sinx2xsinxdx]π2π2=[x2sinx+2{xcosxcosxdx}]π2π2=[x2sinx+2xcosx2sinx]π2π2={π242}+{π242}=π224
Commented by Ar Brandon last updated on 05/Nov/20
Commented by Ar Brandon last updated on 05/Nov/20
∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx
abf(x)dx=abf(a+bx)dx
Answered by Dwaipayan Shikari last updated on 05/Nov/20
Integral is symmetric   ∫_(−(π/2)) ^(π/2) log(((π+x)/(π−x)))cosx=0  ∫_(−(π/2)) ^(π/2) x^2 cosxdx  =[x^2 sinx]_(−(π/2)) ^(π/2) −∫_(−(π/2)) ^(π/2) 2xsinxdx  =(π^2 /2)+2[xcosx]_(−(π/2)) ^(π/2) −2∫_(−(π/2)) ^(π/2) cosx  =(π^2 /2)−2.2 =(π^2 /2)−4
Integralissymmetricπ2π2log(π+xπx)cosx=0π2π2x2cosxdx=[x2sinx]π2π2π2π22xsinxdx=π22+2[xcosx]π2π22π2π2cosx=π222.2=π224
Answered by Bird last updated on 05/Nov/20
∫_(−(π/2)) ^(π/2) (x^2  +ln(((π+x)/(π−x))))cosx dx  =∫_(−(π/2)) ^(π/2) x^2 cosx dx+∫_(−(π/2)) ^(π/2) ln(((π+x)/(π−x)))cosxdx(→=0  odd function under integral)  =∫_(−(π/2)) ^(π/2)  x^2 cosx dx=[x^2 sinx]_(−(π/2)) ^(π/2)   −∫_(−(π/2)) ^(π/2) 2x sinx dx  =(π^2 /2)−2 ∫_(−(π/2)) ^(π/2)  xsinx dx  we have  ∫_(−(π/2)) ^(π/2)  xsinx dx =2∫_0 ^(π/2) xsinx dx  =2{[−xcosx]_0 ^(π/2) +∫_0 ^(π/2)  cosxdx}  =2 [sinx]_0 ^(π/2)  =2 ⇒  I =(π^2 /2)−4
π2π2(x2+ln(π+xπx))cosxdx=π2π2x2cosxdx+π2π2ln(π+xπx)cosxdx(→=0oddfunctionunderintegral)=π2π2x2cosxdx=[x2sinx]π2π2π2π22xsinxdx=π222π2π2xsinxdxwehaveπ2π2xsinxdx=20π2xsinxdx=2{[xcosx]0π2+0π2cosxdx}=2[sinx]0π2=2I=π224

Leave a Reply

Your email address will not be published. Required fields are marked *