Question Number 121174 by benjo_mathlover last updated on 05/Nov/20

Answered by TANMAY PANACEA last updated on 05/Nov/20
![I=∫_((−π)/2) ^(π/2) { (0−x)^2 +ln(((π+(0−x))/(π−(0−x))))}cos(0−x) dx I=∫_((−π)/2) ^(π/2) { x^2 +ln(((π−x)/(π+x)))}cosx dx 2I=∫_((−π)/2) ^(π/2) 2x^2 ×cosx+cosx{ln(((π+x)/(π−x)))+ln(((π−x)/(π+x)))}dx 2I=∫_((−π)/2) ^(π/2) 2x^2 ×cosx+cosx×ln1 dx I=∫_((−π)/2) ^(π/2) x^2 cosx dx J=∫x^2 e^(ix) dx =x^2 (e^(ix) /i)−∫2x×(e^(ix) /i)dx =((x^2 e^(ix) ×i)/(−1))+2i∫xe^(ix) dx =−ix^2 (cosx+isinx)+2i[x×(e^(ix) /i)−∫(e^(ix) /i)dx] =−ix^2 (cosx+isinx)+2x(cosx+isinx)−2×(e^(ix) /i) =(−ix^2 cosx)+x^2 sinx+2xcosx+i×2xcosx+2i(cosx+isinx) =real part +im part real psrt=(x^2 sinx+2xcosx−2sinx) I=∣x^2 sinx+2xcosx−2sinx∣_((−π)/2) ^(π/2) =(π^2 /4)×1−(π^2 /4)×(−1)+2×(π/2)×0−2×((−π)/2)×0−2(1+1) =(π^2 /2)−4](https://www.tinkutara.com/question/Q121176.png)
Commented by TANMAY PANACEA last updated on 05/Nov/20

Commented by benjo_mathlover last updated on 06/Nov/20

Answered by Ar Brandon last updated on 05/Nov/20
![I=∫_(−(π/2)) ^(π/2) {x^2 +ln(((π+x)/(π−x)))}cosxdx I=∫_(−(π/2)) ^(π/2) {x^2 +ln(((π−x)/(π+x)))}cosxdx I+I=∫_(−(π/2)) ^(π/2) {2x^2 +ln(((π+x)/(π−x)))+ln(((π−x)/(π+x)))}cosxdx ⇒2I=∫_(−(π/2)) ^(π/2) 2x^2 cosxdx=2[x^2 ∫cosxdx−∫{(dx^2 /dx)∙∫cosxdx}]_(−(π/2)) ^(π/2) ⇒I=[x^2 sinx−2∫xsinxdx]_(−(π/2)) ^(π/2) =[x^2 sinx+2{xcosx−∫cosxdx}]_(−(π/2)) ^(π/2) =[x^2 sinx+2xcosx−2sinx]_(−(π/2)) ^(π/2) ={(π^2 /4)−2}+{(π^2 /4)−2} =(π^2 /2)−4](https://www.tinkutara.com/question/Q121177.png)
Commented by Ar Brandon last updated on 05/Nov/20

Commented by Ar Brandon last updated on 05/Nov/20

Answered by Dwaipayan Shikari last updated on 05/Nov/20
![Integral is symmetric ∫_(−(π/2)) ^(π/2) log(((π+x)/(π−x)))cosx=0 ∫_(−(π/2)) ^(π/2) x^2 cosxdx =[x^2 sinx]_(−(π/2)) ^(π/2) −∫_(−(π/2)) ^(π/2) 2xsinxdx =(π^2 /2)+2[xcosx]_(−(π/2)) ^(π/2) −2∫_(−(π/2)) ^(π/2) cosx =(π^2 /2)−2.2 =(π^2 /2)−4](https://www.tinkutara.com/question/Q121178.png)
Answered by Bird last updated on 05/Nov/20
![∫_(−(π/2)) ^(π/2) (x^2 +ln(((π+x)/(π−x))))cosx dx =∫_(−(π/2)) ^(π/2) x^2 cosx dx+∫_(−(π/2)) ^(π/2) ln(((π+x)/(π−x)))cosxdx(→=0 odd function under integral) =∫_(−(π/2)) ^(π/2) x^2 cosx dx=[x^2 sinx]_(−(π/2)) ^(π/2) −∫_(−(π/2)) ^(π/2) 2x sinx dx =(π^2 /2)−2 ∫_(−(π/2)) ^(π/2) xsinx dx we have ∫_(−(π/2)) ^(π/2) xsinx dx =2∫_0 ^(π/2) xsinx dx =2{[−xcosx]_0 ^(π/2) +∫_0 ^(π/2) cosxdx} =2 [sinx]_0 ^(π/2) =2 ⇒ I =(π^2 /2)−4](https://www.tinkutara.com/question/Q121192.png)