Question Number 121174 by benjo_mathlover last updated on 05/Nov/20
$$\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{ln}\:\left(\frac{\pi+\mathrm{x}}{\pi−\mathrm{x}}\right)\right)\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:? \\ $$
Answered by TANMAY PANACEA last updated on 05/Nov/20
$${I}=\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left\{\:\left(\mathrm{0}−{x}\right)^{\mathrm{2}} +{ln}\left(\frac{\pi+\left(\mathrm{0}−{x}\right)}{\pi−\left(\mathrm{0}−{x}\right)}\right)\right\}{cos}\left(\mathrm{0}−{x}\right)\:{dx} \\ $$$${I}=\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left\{\:{x}^{\mathrm{2}} +{ln}\left(\frac{\pi−{x}}{\pi+{x}}\right)\right\}{cosx}\:{dx} \\ $$$$\mathrm{2}{I}=\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{x}^{\mathrm{2}} ×{cosx}+{cosx}\left\{{ln}\left(\frac{\pi+{x}}{\pi−{x}}\right)+{ln}\left(\frac{\pi−{x}}{\pi+{x}}\right)\right\}{dx} \\ $$$$\mathrm{2}{I}=\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{x}^{\mathrm{2}} ×{cosx}+{cosx}×{ln}\mathrm{1}\:\:{dx} \\ $$$${I}=\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {x}^{\mathrm{2}} {cosx}\:{dx} \\ $$$${J}=\int{x}^{\mathrm{2}} {e}^{{ix}} {dx} \\ $$$$={x}^{\mathrm{2}} \frac{{e}^{{ix}} }{{i}}−\int\mathrm{2}{x}×\frac{{e}^{{ix}} }{{i}}{dx} \\ $$$$=\frac{{x}^{\mathrm{2}} {e}^{{ix}} ×{i}}{−\mathrm{1}}+\mathrm{2}{i}\int{xe}^{{ix}} {dx} \\ $$$$=−{ix}^{\mathrm{2}} \left({cosx}+{isinx}\right)+\mathrm{2}{i}\left[{x}×\frac{{e}^{{ix}} }{{i}}−\int\frac{{e}^{{ix}} }{{i}}{dx}\right] \\ $$$$=−{ix}^{\mathrm{2}} \left({cosx}+{isinx}\right)+\mathrm{2}{x}\left({cosx}+{isinx}\right)−\mathrm{2}×\frac{{e}^{{ix}} }{{i}} \\ $$$$=\left(−{ix}^{\mathrm{2}} {cosx}\right)+{x}^{\mathrm{2}} {sinx}+\mathrm{2}{xcosx}+{i}×\mathrm{2}{xcosx}+\mathrm{2}{i}\left({cosx}+{isinx}\right) \\ $$$$={real}\:{part}\:+{im}\:{part} \\ $$$$ \\ $$$${real}\:{psrt}=\left({x}^{\mathrm{2}} {sinx}+\mathrm{2}{xcosx}−\mathrm{2}{sinx}\right) \\ $$$${I}=\mid{x}^{\mathrm{2}} {sinx}+\mathrm{2}{xcosx}−\mathrm{2}{sinx}\mid_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}×\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}×\left(−\mathrm{1}\right)+\mathrm{2}×\frac{\pi}{\mathrm{2}}×\mathrm{0}−\mathrm{2}×\frac{−\pi}{\mathrm{2}}×\mathrm{0}−\mathrm{2}\left(\mathrm{1}+\mathrm{1}\right) \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{4} \\ $$
Commented by TANMAY PANACEA last updated on 05/Nov/20
$${yes}\:{yes}\:{i}\:{could}\:{not}\:{see}… \\ $$
Commented by benjo_mathlover last updated on 06/Nov/20
$$\mathrm{yess}… \\ $$
Answered by Ar Brandon last updated on 05/Nov/20
$$\mathcal{I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{x}^{\mathrm{2}} +\mathrm{ln}\left(\frac{\pi+\mathrm{x}}{\pi−\mathrm{x}}\right)\right\}\mathrm{cosxdx} \\ $$$$\mathcal{I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{x}^{\mathrm{2}} +\mathrm{ln}\left(\frac{\pi−\mathrm{x}}{\pi+\mathrm{x}}\right)\right\}\mathrm{cosxdx} \\ $$$$\mathcal{I}+\mathcal{I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{2x}^{\mathrm{2}} +\mathrm{ln}\left(\frac{\pi+\mathrm{x}}{\pi−\mathrm{x}}\right)+\mathrm{ln}\left(\frac{\pi−\mathrm{x}}{\pi+\mathrm{x}}\right)\right\}\mathrm{cosxdx} \\ $$$$\Rightarrow\mathrm{2}\mathcal{I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2x}^{\mathrm{2}} \mathrm{cosxdx}=\mathrm{2}\left[\mathrm{x}^{\mathrm{2}} \int\mathrm{cosxdx}−\int\left\{\frac{\mathrm{dx}^{\mathrm{2}} }{\mathrm{dx}}\centerdot\int\mathrm{cosxdx}\right\}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\Rightarrow\mathcal{I}=\left[\mathrm{x}^{\mathrm{2}} \mathrm{sinx}−\mathrm{2}\int\mathrm{xsinxdx}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:=\left[\mathrm{x}^{\mathrm{2}} \mathrm{sinx}+\mathrm{2}\left\{\mathrm{xcosx}−\int\mathrm{cosxdx}\right\}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:=\left[\mathrm{x}^{\mathrm{2}} \mathrm{sinx}+\mathrm{2xcosx}−\mathrm{2sinx}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} =\left\{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{2}\right\}+\left\{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{2}\right\} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{4} \\ $$
Commented by Ar Brandon last updated on 05/Nov/20
Commented by Ar Brandon last updated on 05/Nov/20
$$\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{a}+\mathrm{b}−\mathrm{x}\right)\mathrm{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 05/Nov/20
$${Integral}\:{is}\:{symmetric}\: \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {log}\left(\frac{\pi+{x}}{\pi−{x}}\right){cosx}=\mathrm{0} \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {x}^{\mathrm{2}} {cosxdx} \\ $$$$=\left[{x}^{\mathrm{2}} {sinx}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} −\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{xsinxdx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}\left[{xcosx}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} −\mathrm{2}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {cosx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}.\mathrm{2}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{4} \\ $$
Answered by Bird last updated on 05/Nov/20
$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left({x}^{\mathrm{2}} \:+{ln}\left(\frac{\pi+{x}}{\pi−{x}}\right)\right){cosx}\:{dx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {x}^{\mathrm{2}} {cosx}\:{dx}+\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\pi+{x}}{\pi−{x}}\right){cosxdx}\left(\rightarrow=\mathrm{0}\:\:{odd}\:{function}\:{under}\:{integral}\right) \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{x}^{\mathrm{2}} {cosx}\:{dx}=\left[{x}^{\mathrm{2}} {sinx}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$−\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{x}\:{sinx}\:{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{xsinx}\:{dx}\:\:{we}\:{have} \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{xsinx}\:{dx}\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {xsinx}\:{dx} \\ $$$$=\mathrm{2}\left\{\left[−{xcosx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cosxdx}\right\} \\ $$$$=\mathrm{2}\:\left[{sinx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\mathrm{2}\:\Rightarrow \\ $$$${I}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{4} \\ $$$$ \\ $$