Menu Close

pi-2-pi-4-3x-7-




Question Number 21582 by Isse last updated on 28/Sep/17
∫_(π/2) ^(π/4) (3x+7)
$$\int_{\pi/\mathrm{2}} ^{\pi/\mathrm{4}} \left(\mathrm{3}{x}+\mathrm{7}\right) \\ $$
Answered by Joel577 last updated on 29/Sep/17
I = ∫_(π/2) ^(π/4)  3x + 7 dx     = [(3/2)x^2  + 7x]_(π/2) ^(π/4)      = (((3π^2 )/(32)) + ((7π)/4)) − (((3π^2 )/8) + ((7π)/2))     = −(((9π^2 )/(32)) + ((7π)/4))
$${I}\:=\:\underset{\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\mathrm{3}{x}\:+\:\mathrm{7}\:{dx} \\ $$$$\:\:\:=\:\left[\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \:+\:\mathrm{7}{x}\right]_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$\:\:\:=\:\left(\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{32}}\:+\:\frac{\mathrm{7}\pi}{\mathrm{4}}\right)\:−\:\left(\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{8}}\:+\:\frac{\mathrm{7}\pi}{\mathrm{2}}\right) \\ $$$$\:\:\:=\:−\left(\frac{\mathrm{9}\pi^{\mathrm{2}} }{\mathrm{32}}\:+\:\frac{\mathrm{7}\pi}{\mathrm{4}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *