Menu Close

pi-2-pi-4-sin-3-x-cos-2-x-dx-




Question Number 154877 by SANOGO last updated on 22/Sep/21
∫_(π/2) ^(π/4) sin^3 (x)cos^2 (x)dx
π2π4sin3(x)cos2(x)dx
Commented by saly last updated on 24/Sep/21
 thank you
thankyou
Answered by Mr.D.N. last updated on 22/Sep/21
   ∫_(π/2) ^( (π/4))  sin^3 (x) cos^2 (x) dx       ∫_(π/2) ^( (π/4))   sin^2 x.cos^2 x. sin x dx     ∫_(π/2) ^( (π/4))   (1−cos^2 x)cos^2 x sinx dx     put cos x= t       −sin x dx =dt        sin x dx= −dt     change limit,    if x=(π/4) then t= (1/( (√2)))   if x= (π/2) then t= 0     −∫_0 ^( (1/( (√2))))   (1−t^2 )t^2 dt     ∫_0 ^(1/( (√2)))  ( t^4 −t^2 )dt   =     [(t^5 /5)−(t^3 /3)]_0 ^(1/( (√2)))    =  [t^3 ((1/5)t^2 −(1/3))]_0 ^(1/(√2))    = [ ((1/( (√2))))^3 {(1/5)((√2) )^2 −(1/3)}]−0   = (1/( (√2)))×(1/2)((2/5)−(1/3))    = (1/( 2(√2)))(((6−5)/(15)))=(1/(30(√2))) //.
π2π4sin3(x)cos2(x)dxπ2π4sin2x.cos2x.sinxdxπ2π4(1cos2x)cos2xsinxdxputcosx=tsinxdx=dtsinxdx=dtchangelimit,ifx=π4thent=12ifx=π2thent=0012(1t2)t2dt012(t4t2)dt=[t55t33]012=[t3(15t213)]01/2=[(12)3{15(2)213}]0=12×12(2513)=122(6515)=1302//.
Commented by SANOGO last updated on 23/Sep/21
merci bien
mercibien
Answered by Ar Brandon last updated on 23/Sep/21
I=∫_(π/2) ^(π/4) sin^3 xcos^2 xdx=∫_(π/2) ^(π/4) sinx(cos^2 x−cos^4 x)dx    =∫_(π/2) ^(π/4) (cos^4 x−cos^2 x)d(cosx)=[((cos^5 x)/5)−((cos^3 x)/3)]_(π/2) ^(π/4)     =(1/(5(√2^5 )))−(1/(3(√2^3 )))=(1/(20(√2)))−(1/(6(√2)))=−((7(√2))/(120))
I=π2π4sin3xcos2xdx=π2π4sinx(cos2xcos4x)dx=π2π4(cos4xcos2x)d(cosx)=[cos5x5cos3x3]π2π4=15251323=1202162=72120

Leave a Reply

Your email address will not be published. Required fields are marked *