pi-3-pi-2-dx-1-sin-x-cos-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 118340 by bramlexs22 last updated on 17/Oct/20 ∫π/2π/3dx1+sinx−cosx Commented by Dwaipayan Shikari last updated on 17/Oct/20 ∫π3π2dx1−cosx+sinx=2∫131dt1−1−t21+t2+2t1+t2.11+t2x=tanx2=2∫131dt2t2+2t=∫131dtt(t+1)=[log(tt+1)]131=log(12)−log(13+1)=log(3+12) Answered by Bird last updated on 17/Oct/20 I=∫π3π2dx1+sinx−cosxwedothech.tan(x2)=t⇒I=∫1312dt(1+t2)(1+2t1+t2−1−t21+t2)=∫1312dt1+t2+2t−1+t2=∫1312dt2t2+2t=∫131dtt(t+1)=∫131(1t−1t+1)dt=[ln∣tt+1∣]131=ln(12)−ln(13(1+13))=−ln(2)+ln(1+3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-118339Next Next post: Question-183879 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.