Menu Close

pi-4-pi-1-sin2x-dx-




Question Number 106125 by Ar Brandon last updated on 02/Aug/20
∫_(π/4) ^π (√(1−sin2x)) dx
π4π1sin2xdx
Answered by Dwaipayan Shikari last updated on 02/Aug/20
∫_(π/4) ^π sinx−cosx dx     or∫_(π/4) ^π cosx−sinx  −[(sinx+cosx)]_(π/4) ^π =1+(√2)  or∫_(π/4) ^π cosx−sinx=  [sinx+cosx]_(π/4) ^π =−(1+(√2))
π4πsinxcosxdxorπ4πcosxsinx[(sinx+cosx)]π4π=1+2orπ4πcosxsinx=[sinx+cosx]π4π=(1+2)
Commented by Ar Brandon last updated on 02/Aug/20
OK. Below is my view point. I′ll like to have your  opinion.
OK.Belowismyviewpoint.Illliketohaveyouropinion.
Answered by Ar Brandon last updated on 02/Aug/20
f(x)=(√(1−sin2x))=(√((cosx−sinx)^2 ))           =∣cosx−sinx∣=(√2)∣cos(x+(π/4))∣  f(x)= { (((√2)cos(x+(π/4))   for −(3/4)≤x≤(π/4))),((−(√2)cos(x+(π/4)) for (π/4)<x<((5π)/4))) :}  ⇒∫_(π/4) ^π f(x)dx=−(√2)∫_(π/4) ^π cos(x+(π/4))dx                             =−(√2)[sin(x+(π/4))]_(π/4) ^π =−(√2)(−(1/( (√2)))−1)                             =(√2)+1
f(x)=1sin2x=(cosxsinx)2=∣cosxsinx∣=2cos(x+π4)f(x)={2cos(x+π4)for34xπ42cos(x+π4)forπ4<x<5π4π4πf(x)dx=2π4πcos(x+π4)dx=2[sin(x+π4)]π4π=2(121)=2+1
Commented by 1549442205PVT last updated on 03/Aug/20
By the hypothesis the interval to take  integration be [(π/4);π],so (π/2)≤(π/4)+x≤((5π)/4)  ⇒cos((π/4)+x)<0
Bythehypothesistheintervaltotakeintegrationbe[π4;π],soπ2π4+x5π4cos(π4+x)<0

Leave a Reply

Your email address will not be published. Required fields are marked *