Question Number 106125 by Ar Brandon last updated on 02/Aug/20

Answered by Dwaipayan Shikari last updated on 02/Aug/20
![∫_(π/4) ^π sinx−cosx dx or∫_(π/4) ^π cosx−sinx −[(sinx+cosx)]_(π/4) ^π =1+(√2) or∫_(π/4) ^π cosx−sinx= [sinx+cosx]_(π/4) ^π =−(1+(√2))](https://www.tinkutara.com/question/Q106127.png)
Commented by Ar Brandon last updated on 02/Aug/20

Answered by Ar Brandon last updated on 02/Aug/20
![f(x)=(√(1−sin2x))=(√((cosx−sinx)^2 )) =∣cosx−sinx∣=(√2)∣cos(x+(π/4))∣ f(x)= { (((√2)cos(x+(π/4)) for −(3/4)≤x≤(π/4))),((−(√2)cos(x+(π/4)) for (π/4)<x<((5π)/4))) :} ⇒∫_(π/4) ^π f(x)dx=−(√2)∫_(π/4) ^π cos(x+(π/4))dx =−(√2)[sin(x+(π/4))]_(π/4) ^π =−(√2)(−(1/( (√2)))−1) =(√2)+1](https://www.tinkutara.com/question/Q106128.png)
Commented by 1549442205PVT last updated on 03/Aug/20
![By the hypothesis the interval to take integration be [(π/4);π],so (π/2)≤(π/4)+x≤((5π)/4) ⇒cos((π/4)+x)<0](https://www.tinkutara.com/question/Q106136.png)