Menu Close

pi-4-pi-2-4cot-x-1-4-cot-x-dx-




Question Number 117176 by bemath last updated on 10/Oct/20
∫_(π/4) ^(π/2)  ((4cot x+1 )/(4−cot x)) dx =?
π/2π/44cotx+14cotxdx=?
Commented by bemath last updated on 10/Oct/20
the other way   ((4cot x+1)/(4−cot x)) = cot (x−cot^(−1) (4))  ∫_(π/4) ^(π/2) ((4cot x+1)/(4−cot x)) dx = [ ln (sin (x−cot^(−1) (4))]_(π/4) ^(π/2)   = ln (sin ((π/2)−cot^(−1) (4))−ln (sin ((π/4)−cot^(−1) (4))  = ln (((cos (cot^(−1) (4)))/(sin ((π/4)−cot^(−1) (4))))   = ln (((4/( (√(17))))/(((√2)/2)((4/( (√(17))))−(1/( (√(17))))))))  = ln (((4(√2))/3))
theotherway4cotx+14cotx=cot(xcot1(4))π/2π/44cotx+14cotxdx=[ln(sin(xcot1(4))]π/4π/2=ln(sin(π2cot1(4))ln(sin(π4cot1(4))=ln(cos(cot1(4))sin(π4cot1(4))=ln(41722(417117))=ln(423)
Answered by TANMAY PANACEA last updated on 10/Oct/20
∫_(π/4) ^(π/2) ((4cosx+sinx)/(4sinx−cosx))dx  ∫_(π/4) ^(π/2)  ((d(4sinx−cosx))/(4sinx−cosx))  ∣ln(4sinx−cosx)∣_(π/4) ^(π/2)    =ln(4−0)−ln(4×(1/( (√2)))−(1/( (√2))))  ln(((4(√2))/3))
π4π24cosx+sinx4sinxcosxdxπ4π2d(4sinxcosx)4sinxcosxln(4sinxcosx)π4π2=ln(40)ln(4×1212)ln(423)
Commented by bemath last updated on 10/Oct/20
thank you sir
thankyousir
Answered by AbduraufKodiriy last updated on 10/Oct/20
Solution:  I=∫_(π/4) ^(π/2) ((4cot(x)+1)/(4−cot(x)))dx=∫_(π/4) ^(π/2) cot(x−arccot4)dx=  =ln∣sin(x−arccot4)∣∣_(π/4) ^(π/2) =ln(((sin((π/2)−arccot4))/(sin((π/4)−arccot4))))=  =ln(((cos(arccos(4/( (√(17))))))/((1/( (√2)))(cos(arccos(4/( (√(17)))))−sin(arcsin(1/( (√(17)))))))))=  =ln(((4/( (√(17))))/((1/( (√2)))∙(3/( (√(17)))))))=ln((4(√2))/3)
Solution:I=π4π24cot(x)+14cot(x)dx=π4π2cot(xarccot4)dx==lnsin(xarccot4)π4π2=ln(sin(π2arccot4)sin(π4arccot4))==ln(cos(arccos417)12(cos(arccos417)sin(arcsin117)))==ln(41712317)=ln423
Commented by bemath last updated on 10/Oct/20
haha..same sir
haha..samesir
Commented by AbduraufKodiriy last updated on 10/Oct/20
Yeah :)
Yeah:)
Answered by Dwaipayan Shikari last updated on 10/Oct/20
∫_(π/4) ^(π/2) ((4cosx+sinx)/(4sinx−cosx))dx  =[log(4sinx−cosx)]_(π/4) ^(π/2) =2log(2)−log((3/( (√2))))  =(5/2)log(2)−log(3)
π4π24cosx+sinx4sinxcosxdx=[log(4sinxcosx)]π4π2=2log(2)log(32)=52log(2)log(3)
Answered by mathmax by abdo last updated on 10/Oct/20
A =∫_(π/4) ^(π/2)  ((4cotan(x)+1)/(4−cotanx))dx ⇒ A =∫_(π/4) ^(π/2)  (((4/(tanx))+1)/(4−(1/(tanx)))) dx  =∫_(π/4) ^(π/2)  ((4+tanx)/(4tanx−1))dx =_(tanx =t)    ∫_1 ^∞   ((4+t)/(4t−1))(dt/(1+t^2 ))  =∫_1 ^∞  ((t+4)/((4t−1)(t^2  +1)))dt  let decompose F(t)=((t+4)/((4t−1)(t^2  +1)))  F(t) =(a/(4t−1)) +((bt+c)/(t^2  +1))  a =(4t−1)F(t)∣_(t=(1/4))      =(((1/4)+4)/((1/(16))+1)) =((17)/4)×((16)/(17)) =4  lim_(t→+∞) tF(t) =0 =(a/4) +b ⇒b =−1  F(0) =−4 =−a +c ⇒c=a−4 =0 ⇒F(t)=(4/(4t−1))+((−t)/(t^2  +1)) ⇒  ∫_1 ^∞ F(t)dt =∫_1 ^∞ ((1/(t−(1/4)))−(1/2)((2t)/(t^2  +1)))dt  =[ln∣((t−(1/4))/( (√(t^2 +1))))∣]_1 ^∞  =−ln∣((3/4)/( (√2)))∣ =−ln∣(3/(4(√2)))∣ =−ln(3)+ln(4(√2))  =2ln(2)+(1/2)ln2−ln(3) =(5/2)ln(2)−ln(3)
A=π4π24cotan(x)+14cotanxdxA=π4π24tanx+141tanxdx=π4π24+tanx4tanx1dx=tanx=t14+t4t1dt1+t2=1t+4(4t1)(t2+1)dtletdecomposeF(t)=t+4(4t1)(t2+1)F(t)=a4t1+bt+ct2+1a=(4t1)F(t)t=14=14+4116+1=174×1617=4limt+tF(t)=0=a4+bb=1F(0)=4=a+cc=a4=0F(t)=44t1+tt2+11F(t)dt=1(1t14122tt2+1)dt=[lnt14t2+1]1=ln342=ln342=ln(3)+ln(42)=2ln(2)+12ln2ln(3)=52ln(2)ln(3)

Leave a Reply

Your email address will not be published. Required fields are marked *