Question Number 119038 by MJS_new last updated on 21/Oct/20

Answered by mindispower last updated on 21/Oct/20
![=∫_(−(π/4)) ^(π/4) ((√(1−tg(x)))/( (√(1+tg(x)))))dx,I=∫((√(1+tg(x)))/( (√(1−tg(x)))))dx 2I=∫_(−(π/4) ) ^(π/4) (((√(1−tg(x)))/( (√(1+tg(x)))))+((√(1+tg(x)))/( (√(1−tg(x))))))dx =∫_(−(π/4)) ^(π/4) ((1−tg(x)+1+tg(x))/( (√(1−tg^2 (x)))))dx=2∫(dx/( (√(1−tg^2 (x))))) I=∫_(−(π/4)) ^(π/4) (dx/( (√(1−tg^2 (x)))))=2∫_0 ^(π/4) (dx/( (√(1−tg^2 (x))))) let tg(x)=t⇒x=arctan(t)⇒dx=(dt/(1+t^2 )) ⇒2∫_0 ^1 (dt/( (√(1−t^2 ))(1+t^2 ))) t=sin(w)⇒dt=cos(w),(√(1−t^2 ))=cos(w) ⇔2∫_0 ^(π/2) (dw/(1+sin^2 (w)))=2∫(dw/(1+cos^2 (w))) =2∫_0 ^(π/2) (1/(cos^2 (w)(2+tg^2 (w))))=2∫_0 ^(π/2) ((d(tg(w)))/(2+tg^2 (w))) =∫_0 ^(π/2) ((d(tg(w)))/(1+(((tg(w))/( (√2))))^2 ))=(√2)[arctan(((tg(w))/( (√2))))]_0 ^(π/2) (π/2).(√2)=(π/( (√2))),may bee son mistacks](https://www.tinkutara.com/question/Q119040.png)
Commented by MJS_new last updated on 21/Oct/20

Commented by mindispower last updated on 21/Oct/20

Commented by $@y@m last updated on 22/Oct/20
@mindispower.
Please expain me first line of the solution.
How signs of Numerator and Denominator got interchanged?
Commented by Dwaipayan Shikari last updated on 22/Oct/20

Commented by $@y@m last updated on 22/Oct/20
@Dwaipayan
অনেক ধন্যবাদ.
আমি ভুলে গেছিলাম.
Commented by Dwaipayan Shikari last updated on 22/Oct/20
ধন্যবাদ। আপনি কোথায় থাকেন?
Commented by $@y@m last updated on 22/Oct/20
রাঁচি
Commented by MJS_new last updated on 22/Oct/20
Beautiful letters! Sadly I cannot read them.
Commented by Dwaipayan Shikari last updated on 22/Oct/20
first comment
Many thanks
I have forgotten
second comment
Thanking you. Where do you live?
third comment
Ranchi
fourth comment
সুন্দর হরফ! দু:খিত আমি এটা পড়তে পাচ্ছি না
Answered by $@y@m last updated on 22/Oct/20
![∫((√(1+tan x))/( (√(1−tan x))))dx =∫(√((cos x+sin x)/(cos x−sin x)))dx =∫(√(((cos x+sin x)/(cos x−sin x))×((cos x+sin x)/(cos x+sin x))))dx =∫(√(((cos x+sin x)^2 )/(cos^2 x−sin^2 x)))dx =∫((cos x+sin x)/( (√()cos^2 x−sin^2 x)))dx =∫((cos x)/( (√(1−2sin^2 x))))dx+∫((sin x)/( (√(2cos^2 x−1))))dx =∫_(−(1/( (√2)))) ^(1/( (√2))) (dp/( (√(1−2p^2 ))))−∫_(1/( (√2))) ^(1/( (√2))) (dq/( (√(2q^2 −1)))) =(1/( (√2)))[sin^(−1) ((√2)p)]_(−(1/( (√2)))) ^(1/( (√2))) +0 =(1/( (√2))){sin^(−1) (1)−sin^(−1) (−1)} =(1/( (√2)))((π/2)−((−π)/2)) =(π/( (√2)))](https://www.tinkutara.com/question/Q119077.png)
Commented by MJS_new last updated on 22/Oct/20
