Menu Close

pi-4-pi-4-sec-x-e-x-1-dx-




Question Number 128610 by john_santu last updated on 08/Jan/21
∫_(−π/4) ^( π/4) ((sec x)/(e^x +1)) dx
π/4π/4secxex+1dx
Commented by liberty last updated on 09/Jan/21
I=−∫_(−π/4) ^( π/4) ((sec (−x))/(e^(−x) +1)) d(−x)  I=∫_(−π/4) ^( π/4) ((sec x)/(e^(−x) +1))dx =∫ _(−π/4)^(π/4)  (((sec x)/(e^(−x) (1+e^x ))))dx  I=∫_(−π/4) ^(  π/4)  ((e^x sec x)/(e^x +1)) dx   adding together two equation  2I=∫_(−π/4) ^( π/4) ((sec x+e^x sec x)/(e^x +1)) dx =∫_(−π/4) ^( π/4) sec x dx  2I = 2∫_0 ^( π/4) sec x dx   I= ln ∣sec x+tan x∣ ]_( 0) ^(π/4)  = ln (1+(√2) )
I=π/4π/4sec(x)ex+1d(x)I=π/4π/4secxex+1dx=π/4π/4(secxex(1+ex))dxI=π/4π/4exsecxex+1dxaddingtogethertwoequation2I=π/4π/4secx+exsecxex+1dx=π/4π/4secxdx2I=20π/4secxdxI=lnsecx+tanx]0π/4=ln(1+2)
Answered by mathmax by abdo last updated on 09/Jan/21
I=∫_(−(π/4)) ^(π/4)  (1/(cosx(1+e^x )))dx =_(x=−t)    ∫_(−(π/4)) ^(π/4)  (1/(cost(1+e^(−t) )))dt ⇒  2I =∫_(−(π/4)) ^(π/4)  (1/(cosx))((1/(1+e^x ))+(1/(1+e^(−x) )))dx =∫_(−(π/4)) ^(π/4) (1/(cosx))(((1+e^(−x)  +1+e^x )/(1+e^(−x)  +e^x  +1)))dx  =∫_(−(π/4)) ^(π/4)  (dx/(cosx)) =2∫_0 ^(π/4)  (dx/(cosx)) ⇒ I =∫_0 ^(π/4)  (dx/(cosx))=_(tan((x/2))=t)   ∫_0 ^((√2)−1)  ((2dt)/((1+t^2 ).((1−t^2 )/(1+t^2 )))) =∫_0 ^((√2)−1) ((1/(1−t))+(1/(1+t)))dt =[ln∣((1+t)/(1−t))∣]_0 ^((√2)−1)   =ln∣((√2)/(2−(√2)))∣
I=π4π41cosx(1+ex)dx=x=tπ4π41cost(1+et)dt2I=π4π41cosx(11+ex+11+ex)dx=π4π41cosx(1+ex+1+ex1+ex+ex+1)dx=π4π4dxcosx=20π4dxcosxI=0π4dxcosx=tan(x2)=t0212dt(1+t2).1t21+t2=021(11t+11+t)dt=[ln1+t1t]021=ln222

Leave a Reply

Your email address will not be published. Required fields are marked *