Question Number 21702 by Isse last updated on 01/Oct/17
$$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \mathrm{1}/\mathrm{2}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta \\ $$
Commented by Tikufly last updated on 01/Oct/17
$$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{\mathrm{1}}{\mathrm{2}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta}\:\:\:\mathrm{OR}\:\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{\mathrm{1}}{\mathrm{2}}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta\:\:?\overset{} {?} \\ $$