Menu Close

pi-pi-cosxln-1-x-1-x-dx-




Question Number 95199 by Fikret last updated on 23/May/20
∫_(−π) ^π cosxln((1+x)/(1−x)) dx=?
ππcosxln1+x1xdx=?
Answered by mr W last updated on 23/May/20
f(x)=cos x ln ((1+x)/(1−x))  f(−x)=cos (−x) ln ((1+(−x))/(1−(−x)))  =cos (−x) ln ((1−x)/(1+x))  =cos x ln (((1+x)/(1−x)))^(−1)   =−cos x ln ((1+x)/(1−x))  =−f(x)  domain of function f(x) is (−1,+1)  therefore ∫_(−π) ^π f(x)dx is not defined.  therefore i changed it to  ∫_(−π/4) ^(π/4) f(x)dx=?.    ∫_(−π/4) ^(π/4) f(x)dx=∫_(−π/4) ^0 f(x)dx+∫_0 ^(π/4) f(x)dx  =∫_(−π/4) ^0 f(−x)d(−x)+∫_0 ^(π/4) f(x)dx  =∫_(π/4) ^0 f(x)dx+∫_0 ^(π/4) f(x)dx  =−∫_0 ^(π/4) f(x)dx+∫_0 ^(π/4) f(x)dx  =0
f(x)=cosxln1+x1xf(x)=cos(x)ln1+(x)1(x)=cos(x)ln1x1+x=cosxln(1+x1x)1=cosxln1+x1x=f(x)domainoffunctionf(x)is(1,+1)thereforeππf(x)dxisnotdefined.thereforeichangedittoπ/4π/4f(x)dx=?.π/4π/4f(x)dx=π/40f(x)dx+0π/4f(x)dx=π/40f(x)d(x)+0π/4f(x)dx=π/40f(x)dx+0π/4f(x)dx=0π/4f(x)dx+0π/4f(x)dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *