pi-pi-sin-1-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60881 by aliesam last updated on 26/May/19 ∫π−πsin(11−x2)dx Commented by MJS last updated on 26/May/19 Idon′tthinkwecansolvethis,notevenapproximate.it′sundefinedatx=±1andit′soszillatingveryfastaroundthesevaluesofx∫π−πsin11−x2dx=2∫π0sin11−x2dx Commented by aliesam last updated on 26/May/19 yesthat′srightandiposteditbecauseitisimproperintegrals Commented by maxmathsup by imad last updated on 27/May/19 letI=∫−ππsin(11−x2)dx⇒2I=∫0πsin(11−x2)dx=∫01sin(11−x2)dx+∫1πsin(11−x2)dx=H+KH=x=sinθ∫0π2sin(1cos2θ)cosθdθwehavex−x36⩽sinx⩽x⇒1cos2θ−16cos6θ⩽sin(1cos2θ)⩽1cos2θ⇒∫0π2cosθsin(1cos2θ)dθ⩾∫0π2dθcosθ−16∫0π2dθcos5θlettake∫0π2dθcosθ∫0π2dθcosθ=tan(θ2)=u∫012du(1+u2)1−u21+u2=∫012du1−u2=∫01(11+u+11−u)du=[ln∣1+u1−u∣]01=∞sothisintegraldiverge…dontwastetimetofindit…! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-1-1-a-find-a-2-a-a-Next Next post: Question-191958 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.