Menu Close

pi-pi-sin-1-1-x-2-dx-




Question Number 60881 by aliesam last updated on 26/May/19
∫_(−π) ^π sin((1/(1−x^2 ))) dx
ππsin(11x2)dx
Commented by MJS last updated on 26/May/19
I don′t think we can solve this, not even  approximate. it′s undefined at x=±1 and  it′s oszillating very fast around these values  of x  ∫_(−π) ^π sin (1/(1−x^2 )) dx=2∫_0 ^π sin (1/(1−x^2 )) dx
Idontthinkwecansolvethis,notevenapproximate.itsundefinedatx=±1anditsoszillatingveryfastaroundthesevaluesofxππsin11x2dx=2π0sin11x2dx
Commented by aliesam last updated on 26/May/19
yes that′s right and i posted it because it is improper integrals
yesthatsrightandiposteditbecauseitisimproperintegrals
Commented by maxmathsup by imad last updated on 27/May/19
let I =∫_(−π) ^π   sin((1/(1−x^2 )))dx ⇒2I =∫_0 ^π  sin((1/(1−x^2 )))dx  =∫_0 ^1  sin((1/(1−x^2 )))dx  +∫_1 ^π  sin((1/(1−x^2 )))dx =H +K  H =_(x =sinθ)    ∫_0 ^(π/2)  sin((1/(cos^2 θ)))cosθ dθ    we have x−(x^3 /6) ≤sinx≤x ⇒  (1/(cos^2 θ)) −(1/(6cos^6 θ)) ≤ sin((1/(cos^2 θ))) ≤(1/(cos^2 θ)) ⇒ ∫_0 ^(π/2)  cosθ sin((1/(cos^2 θ)))dθ   ≥ ∫_0 ^(π/2)   (dθ/(cosθ)) −(1/6) ∫_0 ^(π/2)    (dθ/(cos^5 θ))   let take ∫_0 ^(π/2)  (dθ/(cosθ))  ∫_0 ^(π/2)   (dθ/(cosθ)) =_(tan((θ/2)) =u)     ∫_0 ^1     ((2du)/((1+u^2 )((1−u^2 )/(1+u^2 )))) =∫_0 ^1  ((2du)/(1−u^2 ))  =∫_0 ^1  ((1/(1+u)) +(1/(1−u)))du =[ln∣((1+u)/(1−u))∣]_0 ^1  =∞   so this integral diverge  ...dont  waste time to find it...!
letI=ππsin(11x2)dx2I=0πsin(11x2)dx=01sin(11x2)dx+1πsin(11x2)dx=H+KH=x=sinθ0π2sin(1cos2θ)cosθdθwehavexx36sinxx1cos2θ16cos6θsin(1cos2θ)1cos2θ0π2cosθsin(1cos2θ)dθ0π2dθcosθ160π2dθcos5θlettake0π2dθcosθ0π2dθcosθ=tan(θ2)=u012du(1+u2)1u21+u2=012du1u2=01(11+u+11u)du=[ln1+u1u]01=sothisintegraldivergedontwastetimetofindit!

Leave a Reply

Your email address will not be published. Required fields are marked *