Menu Close

pi-pi-x-2-dx-1-sin-sin-x-1-sin-2-sin-x-




Question Number 105700 by john santu last updated on 31/Jul/20
∫_(−π) ^π  ((x^2  dx)/(1+sin (sin x)+(√(1+sin^2 (sin x)))))
$$\underset{−\pi} {\overset{\pi} {\int}}\:\frac{{x}^{\mathrm{2}} \:{dx}}{\mathrm{1}+\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}} \\ $$$$ \\ $$
Answered by bramlex last updated on 31/Jul/20
I= ∫_(−π) ^π  ((x^2 dx)/(1+(√(1+sin^2 (sin x)))+sin (sin x)))  replace x by −x  I=∫_π ^(−π) ((x^2 (−dx))/(1+(√(1+sin^2 (sin x)))−sin (sin x)))  I=∫_(−π) ^π ((x^2 dx)/(1+(√(1+sin^2 (sin x)))−sin (sin x)))  2I=∫_(−π) ^π  ((2x^2 (1+(√(1+sin^2 (sin x)))) dx)/(2(1+(√(1+sin^2 (sin x))))))  2I= ∫_0 ^π  ((4x^2 (1+(√(1+sin^2 (sin x)))))/(2(1+(√(1+sin^2 (sin x)))))) dx  I=∫_0 ^π  x^2  dx = (1/3)π^3  .★
$${I}=\:\underset{−\pi} {\overset{\pi} {\int}}\:\frac{{x}^{\mathrm{2}} {dx}}{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}+\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)} \\ $$$${replace}\:{x}\:{by}\:−{x} \\ $$$${I}=\underset{\pi} {\overset{−\pi} {\int}}\frac{{x}^{\mathrm{2}} \left(−{dx}\right)}{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}−\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)} \\ $$$${I}=\underset{−\pi} {\overset{\pi} {\int}}\frac{{x}^{\mathrm{2}} {dx}}{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}−\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)} \\ $$$$\mathrm{2}{I}=\underset{−\pi} {\overset{\pi} {\int}}\:\frac{\mathrm{2}{x}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}\right)\:{dx}}{\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}\right)} \\ $$$$\mathrm{2}{I}=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{4}{x}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}\right)}{\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}\right)}\:{dx} \\ $$$${I}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\:{x}^{\mathrm{2}} \:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\pi^{\mathrm{3}} \:.\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *