Menu Close

pi-pi-x-2-dx-1-sin-sin-x-1-sin-2-sin-x-




Question Number 105700 by john santu last updated on 31/Jul/20
∫_(−π) ^π  ((x^2  dx)/(1+sin (sin x)+(√(1+sin^2 (sin x)))))
ππx2dx1+sin(sinx)+1+sin2(sinx)
Answered by bramlex last updated on 31/Jul/20
I= ∫_(−π) ^π  ((x^2 dx)/(1+(√(1+sin^2 (sin x)))+sin (sin x)))  replace x by −x  I=∫_π ^(−π) ((x^2 (−dx))/(1+(√(1+sin^2 (sin x)))−sin (sin x)))  I=∫_(−π) ^π ((x^2 dx)/(1+(√(1+sin^2 (sin x)))−sin (sin x)))  2I=∫_(−π) ^π  ((2x^2 (1+(√(1+sin^2 (sin x)))) dx)/(2(1+(√(1+sin^2 (sin x))))))  2I= ∫_0 ^π  ((4x^2 (1+(√(1+sin^2 (sin x)))))/(2(1+(√(1+sin^2 (sin x)))))) dx  I=∫_0 ^π  x^2  dx = (1/3)π^3  .★
I=ππx2dx1+1+sin2(sinx)+sin(sinx)replacexbyxI=ππx2(dx)1+1+sin2(sinx)sin(sinx)I=ππx2dx1+1+sin2(sinx)sin(sinx)2I=ππ2x2(1+1+sin2(sinx))dx2(1+1+sin2(sinx))2I=π04x2(1+1+sin2(sinx))2(1+1+sin2(sinx))dxI=π0x2dx=13π3.

Leave a Reply

Your email address will not be published. Required fields are marked *