pi-pi-x-2-dx-1-sin-sin-x-1-sin-2-sin-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 105700 by john santu last updated on 31/Jul/20 ∫π−πx2dx1+sin(sinx)+1+sin2(sinx) Answered by bramlex last updated on 31/Jul/20 I=∫π−πx2dx1+1+sin2(sinx)+sin(sinx)replacexby−xI=∫−ππx2(−dx)1+1+sin2(sinx)−sin(sinx)I=∫π−πx2dx1+1+sin2(sinx)−sin(sinx)2I=∫π−π2x2(1+1+sin2(sinx))dx2(1+1+sin2(sinx))2I=∫π04x2(1+1+sin2(sinx))2(1+1+sin2(sinx))dxI=∫π0x2dx=13π3.★ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-171235Next Next post: Solve-the-following-system-of-equations-x-3-y-x-3-y-2-2x-2-y-2-x-2-y-3-xy-3-30-x-2-y-xy-x-y-xy-2-11- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.