Menu Close

pi-pi-x-2020-sin-x-cos-x-dx-8-find-pi-pi-x-2020-cos-x-dx-




Question Number 85097 by jagoll last updated on 19/Mar/20
∫_(−π) ^π  x^(2020)  (sin x+cos x) dx = 8  find ∫_(−π) ^π  x^(2020)  cos x dx = ?
$$\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{8} \\ $$$$\mathrm{find}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$
Answered by john santu last updated on 19/Mar/20
⇒8 = ∫_(−π) ^π x^(2020)  sin x dx + ∫_(−π) ^π x^(2020)  cos x dx  (1) ∫_(−π) ^π x^(2020)  sin x dx = 0   (2) ∫_(−π) ^π x^(2020)  cos x dx = 2∫_0 ^π  x^(2020)  cos x dx  ⇒ 8 = 0 +2 ∫_0 ^π x^(2020)  cos x dx   ⇒ ∫_0 ^π  x^(2020)  cos x dx = 4
$$\Rightarrow\mathrm{8}\:=\:\underset{−\pi} {\overset{\pi} {\int}}\mathrm{x}^{\mathrm{2020}} \:\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}\:+\:\underset{−\pi} {\overset{\pi} {\int}}\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$$$\left(\mathrm{1}\right)\:\underset{−\pi} {\overset{\pi} {\int}}\mathrm{x}^{\mathrm{2020}} \:\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{0}\: \\ $$$$\left(\mathrm{2}\right)\:\underset{−\pi} {\overset{\pi} {\int}}\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{2}\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$$$\Rightarrow\:\mathrm{8}\:=\:\mathrm{0}\:+\mathrm{2}\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\: \\ $$$$\Rightarrow\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{4} \\ $$
Commented by jagoll last updated on 19/Mar/20
thank you mister
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{mister} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *