Menu Close

pi-pi-x-2020-sin-x-cos-x-dx-8-find-pi-pi-x-2020-cos-x-dx-




Question Number 85097 by jagoll last updated on 19/Mar/20
∫_(−π) ^π  x^(2020)  (sin x+cos x) dx = 8  find ∫_(−π) ^π  x^(2020)  cos x dx = ?
ππx2020(sinx+cosx)dx=8findππx2020cosxdx=?
Answered by john santu last updated on 19/Mar/20
⇒8 = ∫_(−π) ^π x^(2020)  sin x dx + ∫_(−π) ^π x^(2020)  cos x dx  (1) ∫_(−π) ^π x^(2020)  sin x dx = 0   (2) ∫_(−π) ^π x^(2020)  cos x dx = 2∫_0 ^π  x^(2020)  cos x dx  ⇒ 8 = 0 +2 ∫_0 ^π x^(2020)  cos x dx   ⇒ ∫_0 ^π  x^(2020)  cos x dx = 4
8=ππx2020sinxdx+ππx2020cosxdx(1)ππx2020sinxdx=0(2)ππx2020cosxdx=2π0x2020cosxdx8=0+2π0x2020cosxdxπ0x2020cosxdx=4
Commented by jagoll last updated on 19/Mar/20
thank you mister
thankyoumister

Leave a Reply

Your email address will not be published. Required fields are marked *