Menu Close

pi-pi-x-sin-x-dx-1-x-1-x-2-3-sin-2-x-




Question Number 105393 by john santu last updated on 28/Jul/20
∫_(−π) ^π  ((x sin x dx)/((1+x+(√(1+x^2 )))(√(3+sin^2 x))))
ππxsinxdx(1+x+1+x2)3+sin2x
Answered by maths mind last updated on 29/Jul/20
A=∫_(−π) ^π (((1+x−(√(1+x^2 )))sin(x))/(2(√(3+sin^2 (x))))).....just ∗(((1+x−(√(1+x^2 ))))/((1+x−(√(1+x^2 )))))  =∫_(−π) ^π (((1−(√(1+x^2 )))sin(x))/(2(√(3+sin^2 (x)))))dx+∫_(−π) ^π ((xsin(x)dx)/( (√(3+sin^2 (x)))))dx  Write in to odd function/+ somthing  f(−x)=−f(x),f=(((1−(√(1+x^2 )))sin(x))/(2(√(3+sin^2 (x)))))  ∫_(−a) ^a f(x)dx=0⇒  A=2∫_0 ^π ((xsin(x))/( (√(3+sin^2 (x)))))dx...x=π−t⇒  =2∫_0 ^π (((π−t)sin(t))/( (√(3+sin^2 (t)))))dt  ⇒4∫_0 ^π ((tsin(t))/( (√(3+sin^2 (t)))))dt=∫((2πsin(s))/( (√(3+sin^2 (s)))))ds   easy  sin^2 (t)=1−cos^2 (t),x=cos(s)⇔2π∫_(−1) ^1 (dx/( (√(4−x^2 ))))  A=π∫_(−1) ^1 (dx/( (√(4−x^2 ))))
A=ππ(1+x1+x2)sin(x)23+sin2(x)..just(1+x1+x2)(1+x1+x2)=ππ(11+x2)sin(x)23+sin2(x)dx+ππxsin(x)dx3+sin2(x)dxWriteintooddfunction/+somthingf(x)=f(x),f=(11+x2)sin(x)23+sin2(x)aaf(x)dx=0A=20πxsin(x)3+sin2(x)dxx=πt=20π(πt)sin(t)3+sin2(t)dt40πtsin(t)3+sin2(t)dt=2πsin(s)3+sin2(s)dseasysin2(t)=1cos2(t),x=cos(s)2π11dx4x2A=π11dx4x2

Leave a Reply

Your email address will not be published. Required fields are marked *