Menu Close

please-calculate-A-and-B-A-1-1-4-1-1-9-1-1-16-1-1-4-084-441-and-2021-2-4084441-B-1-2-2-2-3-2-4-2-5-2-6-2-7-2-8-2-9-2-10-2-11-2-




Question Number 161377 by stelor last updated on 17/Dec/21
please calculate A and  B.    A = (1 − (1/4))(1 − (1/9))(1 − (1/(16)))...(1 − (1/(4 084 441)))  (and 2021^(2 ) = 4084441 )  B = (1^2 −2^2  −3^2  + 4^2 ) + ( 5^2  − 6^2  −7^2  +8^2 ) +(9^2  −10^2  −11^2  +12^2 )+... +(2021^2  −2022^2  −2023^2  +2024^(2 ) )
pleasecalculateAandB.A=(114)(119)(1116)(114084441)(and20212=4084441)B=(122232+42)+(526272+82)+(92102112+122)++(202122022220232+20242)
Commented by MJS_new last updated on 17/Dec/21
please check B  (1^2 −2^2  −3^2  − 4^2 ) + (4^2  − 5^2  − 6^2  +7^2 ) +(8^2 ...
pleasecheckB(12223242)+(425262+72)+(82
Commented by stelor last updated on 17/Dec/21
sorrie i have mistaken.
sorrieihavemistaken.
Answered by MJS_new last updated on 17/Dec/21
A_n =Π_(j=2) ^n ((j^2 −1)/j^2 )=((n+1)/(2n)) ⇒ A_(2021) =((1011)/(2021))
An=nj=2j21j2=n+12nA2021=10112021
Answered by MohammadAzad last updated on 17/Dec/21
  Π_(n=2) ^x (1−(1/n^2 ))=Π_(n=2) ^x (((n^2 −1)/n^2 ))  =Π_(n=2) ^x (n−1)(n+1)(1/n^2 )  =Π_(n=2) ^x ((n−1)/n) . Π_(n=2) ^x ((n+1)/n)=(1/x).((x+1)/2)  =((x+1)/(2x)) (amazing eh?)  You know what′s more amazing  lim_(x→∞) Π_(n=2) ^x (1−(1/n^2 ))=(1/2)
xn=2(11n2)=xn=2(n21n2)=xn=2(n1)(n+1)1n2=xn=2n1n.xn=2n+1n=1x.x+12=x+12x(amazingeh?)Youknowwhatsmoreamazinglimxxn=2(11n2)=12
Answered by MJS_new last updated on 17/Dec/21
B  n^2 −(n+1)^2 −(n+2)^2 +(n+3)^2 =4
Bn2(n+1)2(n+2)2+(n+3)2=4
Commented by stelor last updated on 17/Dec/21
okay. thanks  4×2021
okay.thanks4×2021
Commented by MohammadAzad last updated on 17/Dec/21
Check your solution it is   actually 4×((2024)/4)=2024  Σ_(i=0) ^((n−1)/4) [(4i+1)^2 −(4i+1+1)^2 −(4i+1+2)^2 +(4i+1+3)^2 ]=n+3
Checkyoursolutionitisactually4×20244=2024n14i=0[(4i+1)2(4i+1+1)2(4i+1+2)2+(4i+1+3)2]=n+3
Commented by MJS_new last updated on 17/Dec/21
you′re right
youreright

Leave a Reply

Your email address will not be published. Required fields are marked *