Question Number 175987 by stelor last updated on 10/Sep/22
$${please}\:{calculate} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+\left({tanx}\right)^{\sqrt{\mathrm{2}}} } \\ $$$${J}=\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {x}} \\ $$$${K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{3}{tanx}+\mathrm{2}} \\ $$
Answered by Ar Brandon last updated on 10/Sep/22
$${J}=\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{2}} {x}}=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sec}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} {x}}{dx} \\ $$$$\:\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\left(\mathrm{tan}{x}\right)}{{a}^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} {x}}=\frac{\mathrm{2}}{{a}}\left[\mathrm{arctan}\left(\frac{\mathrm{tan}{x}}{{a}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{{a}} \\ $$
Commented by stelor last updated on 10/Sep/22
$${Thanks} \\ $$
Answered by Ar Brandon last updated on 10/Sep/22
$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+\left(\mathrm{tan}{x}\right)^{\sqrt{\mathrm{2}}} }=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\mathrm{cos}{x}\right)^{\sqrt{\mathrm{2}}} }{\left(\mathrm{sin}{x}\right)^{\sqrt{\mathrm{2}}} +\left(\mathrm{cos}{x}\right)^{\sqrt{\mathrm{2}}} }{dx}\:\:…\left({i}\right) \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\mathrm{sin}{x}\right)^{\sqrt{\mathrm{2}}} }{\left(\mathrm{sin}{x}\right)^{\sqrt{\mathrm{2}}} +\left(\mathrm{cos}{x}\right)^{\sqrt{\mathrm{2}}} }{dx}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)\:+\:\left({ii}\right)\:\Rightarrow \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\mathrm{sin}{x}\right)^{\sqrt{\mathrm{2}}} +\left(\mathrm{cos}{x}\right)^{\sqrt{\mathrm{2}}} }{\left(\mathrm{sin}{x}\right)^{\sqrt{\mathrm{2}}} +\left(\mathrm{cos}{x}\right)^{\sqrt{\mathrm{2}}} }{dx}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow{I}=\frac{\pi}{\mathrm{4}} \\ $$
Answered by Ar Brandon last updated on 10/Sep/22
Commented by Ar Brandon last updated on 10/Sep/22
$${K}\approx\mathrm{0},\mathrm{335236} \\ $$
Commented by Ar Brandon last updated on 11/Sep/22
$${K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{3tan}{x}+\mathrm{2}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}\left(\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\right)+\mathrm{2}}\centerdot\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{6}{t}−\mathrm{2}}\centerdot\frac{\mathrm{2}{dt}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\mathrm{2}} −\mathrm{1}}{\left({t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{dt}=\frac{\mathrm{1}}{\mathrm{13}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{6}{t}−\mathrm{9}}{{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}}−\frac{\mathrm{6}{t}−\mathrm{4}}{{t}^{\mathrm{2}} +\mathrm{1}}\right){dt} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$$\frac{{at}+{b}}{{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}}+\frac{{ct}+{d}}{{t}^{\mathrm{2}} +\mathrm{1}}=\frac{\left({at}+{b}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)+\left({ct}+{d}\right)\left({t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}\right)}{\left({t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$${a}+{c}\overset{{t}^{\mathrm{3}} } {=}\mathrm{0},\:{b}−\mathrm{3}{c}+{d}=\mathrm{1},\:{a}−{c}−\mathrm{3}{d}=\mathrm{0},\:{b}−{d}=−\mathrm{1} \\ $$$$\underset{{t}\rightarrow{i}} {\mathrm{lim}}\:\Rightarrow\left({ci}+{d}\right)\left(−\mathrm{2}−\mathrm{3}{i}\right)=\left(−\mathrm{2}{d}+\mathrm{3}{c}\right)−{i}\left(\mathrm{2}{c}+\mathrm{3}{d}\right)=−\mathrm{2} \\ $$$$\Rightarrow{c}=−\frac{\mathrm{6}}{\mathrm{13}},\:{d}=\frac{\mathrm{4}}{\mathrm{13}},\:\Rightarrow{b}=−\frac{\mathrm{9}}{\mathrm{13}},\:{a}=\frac{\mathrm{6}}{\mathrm{13}} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{13}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{3}\left(\mathrm{2}{t}−\mathrm{3}\right)}{{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}}{dt}−\frac{\mathrm{3}}{\mathrm{13}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}+\frac{\mathrm{4}}{\mathrm{13}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt} \\ $$$$\:\:\:\:=\frac{\mathrm{3}}{\mathrm{13}}\left[\mathrm{ln}\mid{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{3}}{\mathrm{13}}\left[\mathrm{ln}\left({t}^{\mathrm{2}} +\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{4}}{\mathrm{13}}\left[\mathrm{arctan}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:=\frac{\mathrm{3}}{\mathrm{13}}\left[\mathrm{ln}\mid\frac{{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{4}}{\mathrm{13}}\left(\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{13}}\mathrm{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{3}} +\frac{\pi}{\mathrm{13}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{13}}\mathrm{ln}\left(\frac{\mathrm{27}}{\mathrm{8}}\right)+\frac{\pi}{\mathrm{13}}=\frac{\mathrm{1}}{\mathrm{13}}\left(\pi+\mathrm{ln}\left(\frac{\mathrm{27}}{\mathrm{8}}\right)\right)\approx\mathrm{0},\mathrm{33523} \\ $$
Answered by a.lgnaoui last updated on 10/Sep/22
$$ \\ $$$${k}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{3}{tanx}+\mathrm{2}}\:\:\:\:\:\:{posons}\:{t}={tanx}\:\:\:{x}={arctant} \\ $$$${dt}=\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dx}\:\:\:\:\:\:\:{dx}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${k}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left(\mathrm{3}{t}+\mathrm{2}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\int_{\mathrm{0}} ^{\infty} \left(\frac{−\mathrm{3}{t}+\mathrm{2}}{\mathrm{13}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}+\frac{\mathrm{9}}{\mathrm{13}\left(\mathrm{3}{t}+\mathrm{2}\right)}\right){dt} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{26}}\int\frac{\mathrm{2}{t}−\frac{\mathrm{2}}{\mathrm{3}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}+\frac{\mathrm{9}}{\mathrm{13}}\int\frac{{dt}}{\mathrm{3}{t}+\mathrm{2}} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{26}}\left[\mathrm{log}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{13}}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{9}}{\mathrm{13}}\left[\mathrm{log}\left(\mathrm{3t}+\mathrm{2}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{−\mathrm{3}}{\mathrm{26}}\left[\mathrm{log}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{13}}\left[{arctan}\left({t}\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{9}}{\mathrm{13}}\left[\mathrm{log}\left(\mathrm{3t}+\mathrm{2}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$ \\ $$$$\frac{−\mathrm{1}}{\mathrm{13}}\left[\mathrm{log}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{9}}{\mathrm{13}}\left[\mathrm{log}\left(\mathrm{3t}+\mathrm{2}\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\pi}{\mathrm{26}} \\ $$$$=\mathrm{log}\left[\left(\frac{\left(\mathrm{3t}+\mathrm{2}\right)^{\frac{\mathrm{9}}{\mathrm{13}}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{13}}} }\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\pi}{\mathrm{26}} \\ $$$$\mathrm{t}=\mathrm{0}\:\:\:\:\frac{\left(\mathrm{3t}+\mathrm{2}\right)^{\frac{\mathrm{9}}{\mathrm{13}}} }{\left(\mathrm{1}+\mathrm{t}\right)^{\frac{\mathrm{1}}{\mathrm{13}}} }\:=\mathrm{2}^{\frac{\mathrm{9}}{\mathrm{13}}} \:\:\:\: \\ $$$${t}\rightarrow\infty\:\:\:\:\frac{\mathrm{3}{t}^{\frac{\mathrm{9}}{\mathrm{13}}} \left(\mathrm{1}+\frac{\mathrm{2}}{{t}}\right)^{\frac{\mathrm{9}}{\mathrm{13}}} }{{t}^{\frac{\mathrm{1}}{\mathrm{13}}} \left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right)^{\frac{\mathrm{1}}{\mathrm{13}}} }=\mathrm{3}^{\frac{\mathrm{9}}{\mathrm{13}}} {t}^{\frac{\mathrm{8}}{\mathrm{13}}} \\ $$$${k}=\frac{\mathrm{9}}{\mathrm{13}}\mathrm{log}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)+\frac{\pi}{\mathrm{26}}+\frac{\mathrm{8}}{\mathrm{13}}\:\mathrm{lim}_{\mathrm{t}\rightarrow\infty} \left(\mathrm{logt}\right) \\ $$$${k}=+\infty \\ $$$$ \\ $$