Menu Close

please-evaluate-i-1-0-e-x-ln-1-e-x-dx-ii-2-0-sin-x-x-3-dx-iii-n-1-1-n-n-2-cos-n-2-pi-2-9-




Question Number 121649 by mnjuly1970 last updated on 10/Nov/20
        please  evaluate ::         i:   Ω_1  =^? ∫_0 ^( ∞) e^(−x) ln(Γ(1−e^(−x) ))dx         ii:   Ω_2 =^? ∫_0 ^( ∞) (((sin(x))/x))^3 dx        iii:: Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(((√(n^2 π^2 −9)) ))                        ..................
$$\:\:\:\:\:\:\:\:{please}\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:{i}:\:\:\:\Omega_{\mathrm{1}} \:\overset{?} {=}\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} {ln}\left(\Gamma\left(\mathrm{1}−{e}^{−{x}} \right)\right){dx} \\ $$$$\:\:\:\:\:\:\:{ii}:\:\:\:\Omega_{\mathrm{2}} \overset{?} {=}\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{sin}\left({x}\right)}{{x}}\right)^{\mathrm{3}} {dx} \\ $$$$\:\:\:\:\:\:{iii}::\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }{cos}\left(\left(\sqrt{{n}^{\mathrm{2}} \pi^{\mathrm{2}} −\mathrm{9}}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……………… \\ $$
Commented by Dwaipayan Shikari last updated on 10/Nov/20
∫_0 ^∞ e^(−x) Γ(1−e^(−x) )dx  =∫_0 ^1 Γ(t)dt           (1−e^(−x) )=t  It seems to be divergent..
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \Gamma\left(\mathrm{1}−{e}^{−{x}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \Gamma\left({t}\right){dt}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}−{e}^{−{x}} \right)={t} \\ $$$${It}\:{seems}\:{to}\:{be}\:{divergent}.. \\ $$
Commented by mnjuly1970 last updated on 10/Nov/20
thank you mr Dwaypayan  i corrected my mistake.    ∫_0 ^( ∞) e^(−x) ln(Γ(1−e^(−x) ))dx ...
$${thank}\:{you}\:{mr}\:{Dwaypayan} \\ $$$${i}\:{corrected}\:{my}\:{mistake}. \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} {ln}\left(\Gamma\left(\mathrm{1}−{e}^{−{x}} \right)\right){dx}\:… \\ $$
Answered by mnjuly1970 last updated on 11/Nov/20

Leave a Reply

Your email address will not be published. Required fields are marked *