Question Number 98844 by I want to learn more last updated on 16/Jun/20
$$\mathrm{Please}\:\mathrm{explain}:\:\:\:\:\:\:\underset{\mathrm{1}\:\leqslant\:\boldsymbol{\mathrm{i}}\:<\:\boldsymbol{\mathrm{j}}\:\leqslant\:\boldsymbol{\mathrm{n}}} {\sum}\boldsymbol{\mathrm{ij}}\:\:\:\:=\:\:\:\underset{\boldsymbol{\mathrm{j}}\:\:=\:\:\mathrm{2}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\frac{\boldsymbol{\mathrm{j}}\left(\boldsymbol{\mathrm{j}}\:−\:\mathrm{1}\right)\boldsymbol{\mathrm{j}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{I}}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{how}\:\mathrm{L}.\mathrm{H}.\mathrm{S}\:\:=\:\:\mathrm{R}.\mathrm{H}.\mathrm{S} \\ $$
Answered by mr W last updated on 16/Jun/20
$$\underset{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} {\sum}{ij} \\ $$$$=\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left({i}\underset{{j}={i}+\mathrm{1}} {\overset{{n}} {\sum}}{j}\right) \\ $$$$=\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[{i}×\frac{\left({n}+{i}+\mathrm{1}\right)\left({n}−{i}\right)}{\mathrm{2}}\right] \\ $$$${or} \\ $$$$=\underset{{i}=\mathrm{2}} {\overset{{n}} {\sum}}\left({j}\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\sum}}{i}\right) \\ $$$$=\underset{{i}=\mathrm{2}} {\overset{{n}} {\sum}}\left({j}×\frac{{j}×\left({j}−\mathrm{1}\right)}{\mathrm{2}}\right) \\ $$$$=\underset{{j}=\mathrm{2}} {\overset{{n}} {\sum}}\frac{{j}^{\mathrm{2}} \left({j}−\mathrm{1}\right)}{\mathrm{2}} \\ $$
Commented by I want to learn more last updated on 16/Jun/20
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by I want to learn more last updated on 16/Jun/20
Commented by I want to learn more last updated on 16/Jun/20
$$\mathrm{Sir}\:\mathrm{my}\:\mathrm{problems}\:\mathrm{the}\:\mathrm{red}\:\mathrm{ink}.\:\mathrm{How}\:\mathrm{can}\:\mathrm{we}\:\mathrm{know}\:\mathrm{it}. \\ $$$$\mathrm{why}\:\mathrm{we}\:\mathrm{have}:\:\:\:\:\Sigma\:\mathrm{j}\:\underset{\mathrm{i}\:=\:\mathrm{1}} {\overset{\mathrm{j}\:−\:\mathrm{1}} {\sum}}\mathrm{i}\:\:\:\:=\:\:\:\underset{\mathrm{j}\:=\:\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\:…\:\:\:\:=\:\:\:\underset{\mathrm{j}\:\:=\:\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\:\:\:\:\:\:?????? \\ $$$$ \\ $$$$\mathrm{And}\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{in} \\ $$$$\:\:\:\:\mathrm{1}\:\leqslant\:\mathrm{i}\:<\:\mathrm{j}\:\leqslant\:\mathrm{n}\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\:\mathrm{1}\:\leqslant\:\mathrm{i}\:\leqslant\:\mathrm{j}\:\leqslant\:\mathrm{n} \\ $$
Commented by mr W last updated on 16/Jun/20
$$\mathrm{1}\leqslant{i}<{j}\leqslant{n}\:{means}: \\ $$$$\mathrm{1}\leqslant{i}\leqslant{n}−\mathrm{1}\:{and}\:{i}+\mathrm{1}\leqslant{j}\leqslant{n} \\ $$$${or} \\ $$$$\mathrm{2}\leqslant{j}\leqslant{n}\:{and}\:\mathrm{1}\leqslant{i}\leqslant{j}−\mathrm{1} \\ $$
Commented by I want to learn more last updated on 16/Jun/20
$$\mathrm{Ohh}.\:\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate} \\ $$
Commented by mr W last updated on 16/Jun/20
Commented by mr W last updated on 16/Jun/20
$${red}\:{marked}\:{combinations}\:{are} \\ $$$$\mathrm{1}\leqslant{i}<{j}\leqslant{n} \\ $$$$ \\ $$$${they}\:{can}\:{be}\:{described}\:{as} \\ $$$$\mathrm{1}\leqslant{i}\leqslant{n}−\mathrm{1}\:{and}\:{i}+\mathrm{1}\leqslant{j}\leqslant{n} \\ $$$${or}\:{as} \\ $$$$\mathrm{2}\leqslant{j}\leqslant{n}\:{and}\:\mathrm{1}\leqslant{i}\leqslant{j}−\mathrm{1} \\ $$
Commented by I want to learn more last updated on 16/Jun/20
$$\mathrm{wow},\:\mathrm{thanks}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{more}\:\mathrm{details}. \\ $$
Answered by mathmax by abdo last updated on 16/Jun/20
$$\sum_{\mathrm{1}\leqslant\mathrm{i}<\mathrm{j}\leqslant\mathrm{n}} \mathrm{ij}\:=\:\sum_{\mathrm{j}=\mathrm{1}} ^{\mathrm{n}} \left(\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{j}−\mathrm{1}} \:\mathrm{ij}\right)\:=\sum_{\mathrm{j}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{j}\left(\frac{\left(\mathrm{j}−\mathrm{1}\right)\mathrm{j}}{\mathrm{2}}\right)\:=\sum_{\mathrm{j}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{j}^{\mathrm{2}} \left(\mathrm{j}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\sum_{\mathrm{j}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{j}^{\mathrm{3}} −\sum_{\mathrm{j}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{j}^{\mathrm{2}} \right)\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{6}}\right\} \\ $$$$=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\left\{\:\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{4}}−\frac{\mathrm{2n}+\mathrm{1}}{\mathrm{6}}\right\}\:=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\left\{\frac{\mathrm{3n}\left(\mathrm{n}+\mathrm{1}\right)−\mathrm{2}\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{12}}\right\} \\ $$$$=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{3n}^{\mathrm{2}} −\mathrm{n}−\mathrm{2}\right)}{\mathrm{24}} \\ $$
Commented by I want to learn more last updated on 17/Jun/20
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mathmax by abdo last updated on 17/Jun/20
$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$
Answered by mathmax by abdo last updated on 16/Jun/20
$$\mathrm{another}\:\mathrm{method}\:\:\mathrm{we}\:\mathrm{have}\:\left(\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{i}\right)^{\mathrm{2}} \:=\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{i}^{\mathrm{2}} \:+\mathrm{2}\sum_{\mathrm{1}\leqslant\mathrm{i}<\mathrm{j}\leqslant\mathrm{n}} \:\:\mathrm{ij}\:\Rightarrow \\ $$$$\sum_{\mathrm{1}\leqslant\mathrm{i}<\mathrm{j}\leqslant\mathrm{n}} \:\:\mathrm{ij}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left(\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{i}\right)^{\mathrm{2}} \:−\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{i}^{\mathrm{2}} \right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left(\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{6}}\right\}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{6}}\right\} \\ $$
Commented by I want to learn more last updated on 17/Jun/20
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$