Menu Close

please-find-the-integral-solutions-x-and-y-xy-7-2-x-2-y-2-




Question Number 31763 by RAMANUJAN last updated on 14/Mar/18
please find the integral solutions (x and y)   (xy−7)^2  =x^2  +y^2
pleasefindtheintegralsolutions(xandy)(xy7)2=x2+y2
Answered by MJS last updated on 14/Mar/18
(−7,0)  (−4,−3)  (−3,−4)  (0,−7)  (0,7)  (3,4)  (4,3)  (7,0)
(7,0)(4,3)(3,4)(0,7)(0,7)(3,4)(4,3)(7,0)
Commented by MJS last updated on 14/Mar/18
...now I see that  4×3−7=5  4^2 −3^2 =7  3^2 +4^2 =5^2   these might have helped with  the construction of the given  equation
nowIseethat4×37=54232=732+42=52thesemighthavehelpedwiththeconstructionofthegivenequation
Commented by Joel578 last updated on 14/Mar/18
Sir pls explain the way. I′m just guessing the  answer
Sirplsexplaintheway.Imjustguessingtheanswer
Commented by MJS last updated on 14/Mar/18
I solved the equation  y=((7x±(√(x^4 −x^2 +49)))/(x^2 −1))  ⇒ x^4 −x^2 +49 must be a square number  then I tried...
Isolvedtheequationy=7x±x4x2+49x21x4x2+49mustbeasquarenumberthenItried
Answered by Joel578 last updated on 14/Mar/18
(0, ±7) and (±7, 0)
(0,±7)and(±7,0)
Answered by ajfour last updated on 14/Mar/18
x^2 y^2 −14xy+49=x^2 +y^2   x^2 y^2 −16xy+64=(x−y)^2 +15  (xy−8)^2 =(x−y)^2 +15  (xy−8−x+y)(xy−8+x−y)=15  ⇒ xy−8−x+y=3   and        xy−8+x−y=5  ⇒  xy=12  and  x−y=1  ⇒   (4,3) or (−3,−4)  alternatively         xy−8−x+y=5   and         xy−8+x−y=3  ⇒   xy=12  and  y−x=1  so  (3,4) or (−4,−3)  alternatively           xy−8−x+y=−5  and          xy−8+x−y=−3  ⇒     xy=8   and   x−y=1  ⇒  no integral solution  or     xy−8−x+y=−3   and           xy−8+x−y=−5  ⇒     xy=8  and  y−x=1  ⇒ no integral solution , again.  otherwise      xy−8−x+y =15  and      xy−8+x−y=1  ⇒ xy=16  and y−x=7      ⇒ no integral solution  alternatively      xy−8−x+y=−15  and      xy−8+x−y=−1  ⇒    xy=0   and  x−y=7  ⇒   (7,0)  and (0,−7)   otherwise        xy−8−x+y=−1  and        xy−8+x−y=−15  ⇒    xy=0  and  y−x=7  ⇒    (0,7)  and  (−7,0)  hence the integral solutions  for (x,y) are     (4,3), (−3,−4), (3,4), (−4,−3),  and (7,0), (0,−7), (0,7), (−7,0) .
x2y214xy+49=x2+y2x2y216xy+64=(xy)2+15(xy8)2=(xy)2+15(xy8x+y)(xy8+xy)=15xy8x+y=3andxy8+xy=5xy=12andxy=1(4,3)or(3,4)alternativelyxy8x+y=5andxy8+xy=3xy=12andyx=1so(3,4)or(4,3)alternativelyxy8x+y=5andxy8+xy=3xy=8andxy=1nointegralsolutionorxy8x+y=3andxy8+xy=5xy=8andyx=1nointegralsolution,again.otherwisexy8x+y=15andxy8+xy=1xy=16andyx=7nointegralsolutionalternativelyxy8x+y=15andxy8+xy=1xy=0andxy=7(7,0)and(0,7)otherwisexy8x+y=1andxy8+xy=15xy=0andyx=7(0,7)and(7,0)hencetheintegralsolutionsfor(x,y)are(4,3),(3,4),(3,4),(4,3),and(7,0),(0,7),(0,7),(7,0).

Leave a Reply

Your email address will not be published. Required fields are marked *