Menu Close

Please-formular-for-8-3-




Question Number 152187 by Tawa11 last updated on 26/Aug/21
Please formular for     Γ((8/3))
PleaseformularforΓ(83)
Commented by Tawa11 last updated on 26/Aug/21
Or generally        Γ((x/y))
OrgenerallyΓ(xy)
Answered by Olaf_Thorendsen last updated on 26/Aug/21
• Γ(z+1) = zΓ(z)  Γ((8/3)) =(5/3) Γ((5/3)) = (5/3).(2/3)Γ((2/3)) = ((10)/9)Γ((2/3))    • ∀z∈C\Z, Γ(1−z)Γ(z) = (π/(sin(πz)))  • Γ(1−(1/3))Γ((1/3)) = (π/(sin((π/3))))  Γ((2/3))Γ((1/3)) = ((2π)/( (√3)))  Γ((8/3)) = ((10)/9).(((2π)/( (√3)))/(Γ((1/3)))) = ((20π)/(9(√3))).(1/(Γ((1/3))))  We can prove that Γ((1/3)) = 3∫_0 ^∞ e^(−t^3 ) dt  Γ((1/3)) ≈ 2,678938537    General formula :  Γ(n+(1/p)) = Γ((1/p))(((pn−(p−1))!^((p)) )/p^n )  n!^((p))  denotes the pth multifactorial  of n.
Γ(z+1)=zΓ(z)Γ(83)=53Γ(53)=53.23Γ(23)=109Γ(23)zCZ,Γ(1z)Γ(z)=πsin(πz)Γ(113)Γ(13)=πsin(π3)Γ(23)Γ(13)=2π3Γ(83)=109.2π3Γ(13)=20π93.1Γ(13)WecanprovethatΓ(13)=30et3dtΓ(13)2,678938537Generalformula:Γ(n+1p)=Γ(1p)(pn(p1))!(p)pnn!(p)denotesthepthmultifactorialofn.
Commented by Tawa11 last updated on 26/Aug/21
Thanks sir. God bless you.
Thankssir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *