Menu Close

Please-guide-me-Sir-I-was-trying-to-solve-this-eq-for-searching-possible-values-of-x-eq-is-x-2-lt-3-x-7-the-range-of-x-whom-i-got-23-2-lt-x-lt-19




Question Number 49857 by afachri last updated on 11/Dec/18
Please guide me Sir. I was trying to solve   this eq for searching possible values of x.  eq is :                           ∣x − 2∣ < 3∣x + 7∣  the range of x whom i got :   −((23)/2) < x < −((19)/4)  but the result do not satisfy the eq, instead  i put x > −4 , they satisfy the eq.   please help me out of this pickle.  Not because i didn′t try, yet i always  stuck in this type of function.
$$\mathrm{Please}\:\mathrm{guide}\:\mathrm{me}\:\mathrm{Sir}.\:\mathrm{I}\:\mathrm{was}\:\mathrm{trying}\:\mathrm{to}\:\mathrm{solve}\: \\ $$$$\mathrm{this}\:\mathrm{eq}\:\mathrm{for}\:\mathrm{searching}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{x}. \\ $$$$\mathrm{eq}\:\mathrm{is}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{x}\:−\:\mathrm{2}\mid\:<\:\mathrm{3}\mid{x}\:+\:\mathrm{7}\mid \\ $$$$\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{x}\:\mathrm{whom}\:\mathrm{i}\:\mathrm{got}\::\:\:\:−\frac{\mathrm{23}}{\mathrm{2}}\:<\:{x}\:<\:−\frac{\mathrm{19}}{\mathrm{4}} \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{result}\:\mathrm{do}\:\mathrm{not}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{eq},\:\mathrm{instead} \\ $$$$\mathrm{i}\:\mathrm{put}\:{x}\:>\:−\mathrm{4}\:,\:\mathrm{they}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{eq}.\: \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{out}\:\mathrm{of}\:\mathrm{this}\:\mathrm{pickle}. \\ $$$$\mathrm{Not}\:\mathrm{because}\:\mathrm{i}\:\mathrm{didn}'\mathrm{t}\:\mathrm{try},\:\mathrm{yet}\:\mathrm{i}\:\mathrm{always} \\ $$$$\mathrm{stuck}\:\mathrm{in}\:\mathrm{this}\:\mathrm{type}\:\mathrm{of}\:\mathrm{function}. \\ $$
Commented by maxmathsup by imad last updated on 11/Dec/18
the best way is this   let A(x)=∣x−2∣−3∣x+7∣   (e) ⇔ A(x)<0  we eradicate the abslutevalue  x    −∞           −7                 2                            +∞  ∣x−2∣     −x+2   −x+2  0   x−2  ∣x+7∣  −x−7  0    x+7          x+7  A(x)    2x+23       −4x−19    −2x−23  case 1   x≤−7   (e) ⇔ 2x+23 <0 ⇔ x<−((23)/2) ⇒ S_1 =]−∞ ,−((23)/2)[  case 2    −7≤x≤2    (e) ⇔ −4x −19 <0  ⇔ −4x<19  ⇔4x >−19 ⇔x>−((19)/4)   ⇒ S_2 =]−((19)/4) ,2]  case 3     x≥2 ⇒ (e)⇔−2x −23 <0 ⇔ −2x<23 ⇔ 2x>−23 ⇔x>−((23)/2)  ⇒S_3 =[2,+∞[  and  we take ∪S_i   S=S_1 ∪S_2 ∪ S_3  =]−∞,−((23)/2)[∪]−((19)/4),+∞[ .
$${the}\:{best}\:{way}\:{is}\:{this}\: \\ $$$${let}\:{A}\left({x}\right)=\mid{x}−\mathrm{2}\mid−\mathrm{3}\mid{x}+\mathrm{7}\mid\:\:\:\left({e}\right)\:\Leftrightarrow\:{A}\left({x}\right)<\mathrm{0}\:\:{we}\:{eradicate}\:{the}\:{abslutevalue} \\ $$$${x}\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:−\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$$\mid{x}−\mathrm{2}\mid\:\:\:\:\:−{x}+\mathrm{2}\:\:\:−{x}+\mathrm{2}\:\:\mathrm{0}\:\:\:{x}−\mathrm{2} \\ $$$$\mid{x}+\mathrm{7}\mid\:\:−{x}−\mathrm{7}\:\:\mathrm{0}\:\:\:\:{x}+\mathrm{7}\:\:\:\:\:\:\:\:\:\:{x}+\mathrm{7} \\ $$$${A}\left({x}\right)\:\:\:\:\mathrm{2}{x}+\mathrm{23}\:\:\:\:\:\:\:−\mathrm{4}{x}−\mathrm{19}\:\:\:\:−\mathrm{2}{x}−\mathrm{23} \\ $$$$\left.{case}\:\mathrm{1}\:\:\:{x}\leqslant−\mathrm{7}\:\:\:\left({e}\right)\:\Leftrightarrow\:\mathrm{2}{x}+\mathrm{23}\:<\mathrm{0}\:\Leftrightarrow\:{x}<−\frac{\mathrm{23}}{\mathrm{2}}\:\Rightarrow\:{S}_{\mathrm{1}} =\right]−\infty\:,−\frac{\mathrm{23}}{\mathrm{2}}\left[\right. \\ $$$${case}\:\mathrm{2}\:\:\:\:−\mathrm{7}\leqslant{x}\leqslant\mathrm{2}\:\:\:\:\left({e}\right)\:\Leftrightarrow\:−\mathrm{4}{x}\:−\mathrm{19}\:<\mathrm{0}\:\:\Leftrightarrow\:−\mathrm{4}{x}<\mathrm{19}\:\:\Leftrightarrow\mathrm{4}{x}\:>−\mathrm{19}\:\Leftrightarrow{x}>−\frac{\mathrm{19}}{\mathrm{4}} \\ $$$$\left.\:\left.\Rightarrow\:{S}_{\mathrm{2}} =\right]−\frac{\mathrm{19}}{\mathrm{4}}\:,\mathrm{2}\right] \\ $$$${case}\:\mathrm{3}\:\:\:\:\:{x}\geqslant\mathrm{2}\:\Rightarrow\:\left({e}\right)\Leftrightarrow−\mathrm{2}{x}\:−\mathrm{23}\:<\mathrm{0}\:\Leftrightarrow\:−\mathrm{2}{x}<\mathrm{23}\:\Leftrightarrow\:\mathrm{2}{x}>−\mathrm{23}\:\Leftrightarrow{x}>−\frac{\mathrm{23}}{\mathrm{2}} \\ $$$$\Rightarrow{S}_{\mathrm{3}} =\left[\mathrm{2},+\infty\left[\:\:{and}\:\:{we}\:{take}\:\cup{S}_{{i}} \right.\right. \\ $$$$\left.{S}={S}_{\mathrm{1}} \cup{S}_{\mathrm{2}} \cup\:{S}_{\mathrm{3}} \:=\right]−\infty,−\frac{\mathrm{23}}{\mathrm{2}}\left[\cup\right]−\frac{\mathrm{19}}{\mathrm{4}},+\infty\left[\:.\right. \\ $$
Commented by afachri last updated on 11/Dec/18
yes it is Sir. Seems this be my another references.   thank you Mr Max.  soon after Mr Hassen was  giving me explanation, i re−tried and get  the answer  −((23)/2)> x >−((19)/4). and i found  match answer to both of yours Sir.
$$\mathrm{yes}\:\mathrm{it}\:\mathrm{is}\:\mathrm{Sir}.\:\mathrm{Seems}\:\mathrm{this}\:\mathrm{be}\:\mathrm{my}\:\mathrm{another}\:\mathrm{references}.\: \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Mr}\:\mathrm{Max}.\:\:\mathrm{soon}\:\mathrm{after}\:\mathrm{Mr}\:\mathrm{Hassen}\:\mathrm{was} \\ $$$$\mathrm{giving}\:\mathrm{me}\:\mathrm{explanation},\:\mathrm{i}\:\mathrm{re}−\mathrm{tried}\:\mathrm{and}\:\mathrm{get} \\ $$$$\mathrm{the}\:\mathrm{answer}\:\:−\frac{\mathrm{23}}{\mathrm{2}}>\:{x}\:>−\frac{\mathrm{19}}{\mathrm{4}}.\:\mathrm{and}\:\mathrm{i}\:\mathrm{found} \\ $$$$\mathrm{match}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{both}\:\mathrm{of}\:\mathrm{yours}\:\mathrm{Sir}.\: \\ $$
Commented by afachri last updated on 11/Dec/18
i′m glad to be part of this forum.  Hail Math !
$$\mathrm{i}'\mathrm{m}\:\mathrm{glad}\:\mathrm{to}\:\mathrm{be}\:\mathrm{part}\:\mathrm{of}\:\mathrm{this}\:\mathrm{forum}. \\ $$$$\mathrm{Hail}\:\mathrm{Math}\:! \\ $$
Commented by Abdo msup. last updated on 12/Dec/18
you are welcome
$${you}\:{are}\:{welcome} \\ $$
Answered by hassentimol last updated on 11/Dec/18
Well...  We write it as :   ∣x−2∣ − 3∣x+7∣ < 0  We have :  { ((x−2 > 0   ⇔   x > 2)),((x+7 > 0   ⇔   x > −7)) :}    Therefore we define I_1 , I_2  and I_3  such as :  I_1 = ]−∞,−7] : −x+2+3x+21 =   2x+23  I_2 =[−7,2] : −x+2−3x−21 =   −4x−19  I_3 =[2,+∞[ : x−2−3x−21 =   −2x−23    We have :  Let S_n  be the set of solutions for the I_n  interval.  For I_1  : 2x+23<0 ⇔ x<((−23)/2) : S_1 =]−∞,((−23)/2)[  For I_2  : −4x−19<0 ⇔ x>((−19)/4) : S_2 =[((−19)/4),2[  For I_3  : −2x−23<0 ⇔ x>((−23)/2) : S_3 =[2,+∞[    Finally :    We can consider S the set of solutions :      S = { x ∣ x∈]−∞, ((−19)/4)[ ∪ ]2_ ^ , +∞[ }    In other terms :  Either x<((−19)/4) , either x>2.    Thanks  T.H.
$$\mathrm{Well}… \\ $$$$\mathrm{We}\:\mathrm{write}\:\mathrm{it}\:\mathrm{as}\::\:\:\:\mid{x}−\mathrm{2}\mid\:−\:\mathrm{3}\mid{x}+\mathrm{7}\mid\:<\:\mathrm{0} \\ $$$$\mathrm{We}\:\mathrm{have}\::\:\begin{cases}{{x}−\mathrm{2}\:>\:\mathrm{0}\:\:\:\Leftrightarrow\:\:\:{x}\:>\:\mathrm{2}}\\{{x}+\mathrm{7}\:>\:\mathrm{0}\:\:\:\Leftrightarrow\:\:\:{x}\:>\:−\mathrm{7}}\end{cases} \\ $$$$ \\ $$$$\mathrm{Therefore}\:\mathrm{we}\:\mathrm{define}\:\mathrm{I}_{\mathrm{1}} ,\:\mathrm{I}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{I}_{\mathrm{3}} \:\mathrm{such}\:\mathrm{as}\:: \\ $$$$\left.\mathrm{I}_{\mathrm{1}} \left.=\:\right]−\infty,−\mathrm{7}\right]\::\:−{x}+\mathrm{2}+\mathrm{3}{x}+\mathrm{21}\:=\:\:\:\mathrm{2}{x}+\mathrm{23} \\ $$$$\mathrm{I}_{\mathrm{2}} =\left[−\mathrm{7},\mathrm{2}\right]\::\:−{x}+\mathrm{2}−\mathrm{3}{x}−\mathrm{21}\:=\:\:\:−\mathrm{4}{x}−\mathrm{19} \\ $$$$\mathrm{I}_{\mathrm{3}} =\left[\mathrm{2},+\infty\left[\::\:{x}−\mathrm{2}−\mathrm{3}{x}−\mathrm{21}\:=\:\:\:−\mathrm{2}{x}−\mathrm{23}\right.\right. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{have}\:: \\ $$$${Let}\:{S}_{{n}} \:{be}\:{the}\:{set}\:{of}\:{solutions}\:{for}\:{the}\:{I}_{{n}} \:{interval}. \\ $$$$\left.\mathrm{For}\:\mathrm{I}_{\mathrm{1}} \::\:\mathrm{2}{x}+\mathrm{23}<\mathrm{0}\:\Leftrightarrow\:{x}<\frac{−\mathrm{23}}{\mathrm{2}}\::\:\mathrm{S}_{\mathrm{1}} =\right]−\infty,\frac{−\mathrm{23}}{\mathrm{2}}\left[\right. \\ $$$$\mathrm{For}\:\mathrm{I}_{\mathrm{2}} \::\:−\mathrm{4}{x}−\mathrm{19}<\mathrm{0}\:\Leftrightarrow\:{x}>\frac{−\mathrm{19}}{\mathrm{4}}\::\:\mathrm{S}_{\mathrm{2}} =\left[\frac{−\mathrm{19}}{\mathrm{4}},\mathrm{2}\left[\right.\right. \\ $$$$\mathrm{For}\:\mathrm{I}_{\mathrm{3}} \::\:−\mathrm{2}{x}−\mathrm{23}<\mathrm{0}\:\Leftrightarrow\:{x}>\frac{−\mathrm{23}}{\mathrm{2}}\::\:\mathrm{S}_{\mathrm{3}} =\left[\mathrm{2},+\infty\left[\right.\right. \\ $$$$ \\ $$$$\mathrm{Finally}\:: \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{consider}\:\mathbb{S}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{solutions}\:: \\ $$$$\:\:\:\:\mathbb{S}\:=\:\left\{\:{x}\:\mid\:{x}\in\right]−\infty,\:\frac{−\mathrm{19}}{\mathrm{4}}\left[\:\cup\:\right]\underset{} {\overset{} {\mathrm{2}}},\:+\infty\left[\:\right\} \\ $$$$ \\ $$$$\mathrm{In}\:\mathrm{other}\:\mathrm{terms}\:: \\ $$$$\mathrm{Either}\:{x}<\frac{−\mathrm{19}}{\mathrm{4}}\:,\:\mathrm{either}\:{x}>\mathrm{2}. \\ $$$$ \\ $$$$\boldsymbol{{Thanks}} \\ $$$$\boldsymbol{{T}}.\boldsymbol{{H}}. \\ $$
Commented by afachri last updated on 11/Dec/18
Thanks for your explanation Mr. Hassen.  I will learn from this.  But Sir, is x < −((19)/4) satisfy the eq ???
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{explanation}\:\mathrm{Mr}.\:\mathrm{Hassen}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{learn}\:\mathrm{from}\:\mathrm{this}. \\ $$$$\mathrm{But}\:\mathrm{Sir},\:\mathrm{is}\:{x}\:<\:−\frac{\mathrm{19}}{\mathrm{4}}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{eq}\:??? \\ $$
Commented by hassentimol last updated on 11/Dec/18
You are welcome sir. It was a pleasure.
$$\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}.\:\mathrm{It}\:\mathrm{was}\:\mathrm{a}\:\mathrm{pleasure}. \\ $$
Commented by hassentimol last updated on 11/Dec/18
Well...any number smaller than −19/4 will  verify the equation.  But a number which would be greater than  2 would also satisfy the inequation...
$$\mathrm{Well}…\mathrm{any}\:\mathrm{number}\:\mathrm{smaller}\:\mathrm{than}\:−\mathrm{19}/\mathrm{4}\:\mathrm{will} \\ $$$$\mathrm{verify}\:\mathrm{the}\:\mathrm{equation}. \\ $$$$\mathrm{But}\:\mathrm{a}\:\mathrm{number}\:\mathrm{which}\:\mathrm{would}\:\mathrm{be}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\mathrm{2}\:\mathrm{would}\:\mathrm{also}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{inequation}… \\ $$
Commented by hassentimol last updated on 11/Dec/18
Commented by hassentimol last updated on 11/Dec/18
This is the curve of the function when all is put  on one side of the inequation.  The solutions are when the curve is negative...
$$\mathrm{This}\:\mathrm{is}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{when}\:\mathrm{all}\:\mathrm{is}\:\mathrm{put} \\ $$$$\mathrm{on}\:\mathrm{one}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inequation}. \\ $$$$\mathrm{The}\:\mathrm{solutions}\:\mathrm{are}\:\mathrm{when}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{is}\:\mathrm{negative}… \\ $$
Commented by afachri last updated on 11/Dec/18
 i put x = (−5) for trial,                   ∣x − 2∣ − 3∣x + 7∣  < 0       ∣−5 − 2∣  −   3∣−5+7∣  <  0                                       7  − 3(2)  < 0   why x = (−5) doesn′t satisfy the eq Sir ?  correct me Sir, please.
$$\:\mathrm{i}\:\mathrm{put}\:{x}\:=\:\left(−\mathrm{5}\right)\:\mathrm{for}\:\mathrm{trial},\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{x}\:−\:\mathrm{2}\mid\:−\:\mathrm{3}\mid{x}\:+\:\mathrm{7}\mid\:\:<\:\mathrm{0} \\ $$$$\:\:\:\:\:\mid−\mathrm{5}\:−\:\mathrm{2}\mid\:\:−\:\:\:\mathrm{3}\mid−\mathrm{5}+\mathrm{7}\mid\:\:<\:\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{7}\:\:−\:\mathrm{3}\left(\mathrm{2}\right)\:\:<\:\mathrm{0}\: \\ $$$$\mathrm{why}\:{x}\:=\:\left(−\mathrm{5}\right)\:\mathrm{doesn}'\mathrm{t}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{eq}\:\mathrm{Sir}\:? \\ $$$$\mathrm{correct}\:\mathrm{me}\:\mathrm{Sir},\:\mathrm{please}. \\ $$
Commented by afachri last updated on 11/Dec/18
Commented by afachri last updated on 11/Dec/18
thank you very much Sir. i′ve looked in  my graphic too and understand now.  :)
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}.\:\mathrm{i}'\mathrm{ve}\:\mathrm{looked}\:\mathrm{in} \\ $$$$\mathrm{my}\:\mathrm{graphic}\:\mathrm{too}\:\mathrm{and}\:\mathrm{understand}\:\mathrm{now}. \\ $$$$\left.:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *