Menu Close

Please-help-Find-the-area-bounded-by-y-x-2-x-4-x-0-y-0-and-x-3-




Question Number 32756 by NECx last updated on 01/Apr/18
Please help    Find the area bounded by  y(x+2)=x^4 ,x=0,y=0,and x=3
PleasehelpFindtheareaboundedbyy(x+2)=x4,x=0,y=0,andx=3
Answered by MJS last updated on 02/Apr/18
y(x)=(x−2)^4   area between x−axis (y=0) and  y(x) in [0;3], no change of sign  ∫_0 ^3 (x−2)^4 dx=(1/5)(x−2)^5 ∣_0 ^3 =  =(1/5)(1−(−2)^5 )=((33)/5)
y(x)=(x2)4areabetweenxaxis(y=0)andy(x)in[0;3],nochangeofsign30(x2)4dx=15(x2)530==15(1(2)5)=335
Commented by NECx last updated on 02/Apr/18
please I dont understand how you  got y(x)=(x−2)^4   .....Theres nothing of such in the  question.
pleaseIdontunderstandhowyougoty(x)=(x2)4..Theresnothingofsuchinthequestion.
Commented by MJS last updated on 02/Apr/18
I understood that it′s y(x+2), not  y×(x+2). If this is true,  y(x+2)=x^4  ⇒ y(x)=(x−2)^4        [y(x)=(x−2)^4  with x=t+2=         =y(t+2)=(t+2−2)^4 =t^4 ]    if it′s y×(x+2)=x^4  ⇒  ⇒ y=(x^4 /(x+2))=x^3 −2x^2 +4x−8+((16)/(x+2))  still no change of sign in [0;3]  ∫_0 ^3 x^3 −2x^2 +4x−8+((16)/(x+2))dx=  =(1/4)x^4 −(4/3)x^3 +2x^2 −8x+16ln ∣x+2∣∣_0 ^3 =  =−((15)/4)+16ln n−16ln 2=  =−((15)/4)+16ln (5/2)≈10.91
Iunderstoodthatitsy(x+2),noty×(x+2).Ifthisistrue,y(x+2)=x4y(x)=(x2)4[y(x)=(x2)4withx=t+2==y(t+2)=(t+22)4=t4]ifitsy×(x+2)=x4y=x4x+2=x32x2+4x8+16x+2stillnochangeofsignin[0;3]30x32x2+4x8+16x+2dx==14x443x3+2x28x+16lnx+230==154+16lnn16ln2==154+16ln5210.91
Commented by NECx last updated on 02/Apr/18
wow....now I understand
wow.nowIunderstand

Leave a Reply

Your email address will not be published. Required fields are marked *