Question Number 46268 by Saorey last updated on 23/Oct/18

Commented by maxmathsup by imad last updated on 23/Oct/18

Commented by maxmathsup by imad last updated on 23/Oct/18

Answered by MJS last updated on 23/Oct/18
![lim_(x→1) (p/(1−x^p ))−(q/(1−x^q ))=lim_(x→1) ((p(1−x^q )−q(1−x^p ))/((1−x^p )(1−x^q )))= [l′Hopital, 2 times because 1^(st) derivate is still undefined] =lim_(x→1) (((d^2 /dx^2 )[p(1−x^q )−q(1−x^p )])/((d^2 /dx^2 )[(1−x^p )(1−x^q )]))= =lim_(x→1) ((pq(p−1)x^(p−2) +pq(1−q)x^(q−2) )/((p+q)(p+q−1)x^(p+q−2) −p(p−1)x^(p−2) −q(q−1)x^(q−2) ))= =((p−q)/2)](https://www.tinkutara.com/question/Q46270.png)
Commented by Saorey last updated on 23/Oct/18

Answered by ajfour last updated on 24/Oct/18
![L=lim_(x→1) {(p/(1−[1−(1−x)]^p ))−(q/(1−[1−(1−x)]^q ))} = lim_(h→0) {(p/(1−(1−ph+((p(p−1)h^2 )/2)−..)))−(q/(1−(1−qh+((q(q−1)h^2 )/2)−..)))} ⇒ L = lim_(h→0) {(1/h)[(1/(1−(((p−1)h)/2)))−(1/(1−(((q−1)h)/2)))]} = lim_(h→0) (1/h)[(((1−(((q−1)h)/2))−(1−(((p−1)h)/2)))/((1−(((p−1)h)/2))(1−(((q−1)h)/2))))] =(((((p−q)/2)))/1) =((p−q)/2) .](https://www.tinkutara.com/question/Q46274.png)