Menu Close

please-help-me-L-lim-x-1-p-1-x-p-q-1-x-q-p-q-R-




Question Number 46268 by Saorey last updated on 23/Oct/18
please help me!  L=lim_(x→1) ((p/(1−x^p ))−(q/(1−x^q ))) , (p,q∈R)
pleasehelpme!L=limx1(p1xpq1xq),(p,qR)
Commented by maxmathsup by imad last updated on 23/Oct/18
let A(x)=(p/(1−x^p )) −(q/(1−x^q ))  changement x=1+t give  A(x)=B(t) ⇒lim_(x→1) A(x)=lim_(t→0) B(t) with B(t)=(p/(1−(1+t)^p )) −(q/(1−(1+t)^q ))  but (1+t)^p   ∼1+pt  +((p(p−1))/2)t^2  and (1+t)^q ∼1+qt +((q(q−1))/t) t^2   (t →o) ⇒  B(t)∼(p/(−pt−((p(p−1))/2)t^2 )) −(q/(−qt−((q(q−1))/2)t^2 )) ⇒  B(t) ∼ −(1/(t +((p−1)/2)t^2 )) +(1/(t +(((q−1))/2)t^2 )) =((−t −(((q−1))/2)t^2  +t +((p−1)/2) t^2 )/(t^2 (1+(((p−1)t)/2))(1+((q−1)/2)t)))  =(((p−q)/2)/((1+((p−1)/2)t)(1+((q−1)/2)t))) →((p−q)/2) (t→0) ⇒L=lim_(x→1) A(x)=((p−1)/2) .
letA(x)=p1xpq1xqchangementx=1+tgiveA(x)=B(t)limx1A(x)=limt0B(t)withB(t)=p1(1+t)pq1(1+t)qbut(1+t)p1+pt+p(p1)2t2and(1+t)q1+qt+q(q1)tt2(to)B(t)pptp(p1)2t2qqtq(q1)2t2B(t)1t+p12t2+1t+(q1)2t2=t(q1)2t2+t+p12t2t2(1+(p1)t2)(1+q12t)=pq2(1+p12t)(1+q12t)pq2(t0)L=limx1A(x)=p12.
Commented by maxmathsup by imad last updated on 23/Oct/18
L=lim_(x→1)  A(x)=((p−q)/2) .
L=limx1A(x)=pq2.
Answered by MJS last updated on 23/Oct/18
lim_(x→1) (p/(1−x^p ))−(q/(1−x^q ))=lim_(x→1) ((p(1−x^q )−q(1−x^p ))/((1−x^p )(1−x^q )))=       [l′Hopital, 2 times because 1^(st)  derivate        is still undefined]  =lim_(x→1) (((d^2 /dx^2 )[p(1−x^q )−q(1−x^p )])/((d^2 /dx^2 )[(1−x^p )(1−x^q )]))=  =lim_(x→1) ((pq(p−1)x^(p−2) +pq(1−q)x^(q−2) )/((p+q)(p+q−1)x^(p+q−2) −p(p−1)x^(p−2) −q(q−1)x^(q−2) ))=  =((p−q)/2)
limx1p1xpq1xq=limx1p(1xq)q(1xp)(1xp)(1xq)=[lHopital,2timesbecause1stderivateisstillundefined]=limx1d2dx2[p(1xq)q(1xp)]d2dx2[(1xp)(1xq)]==limx1pq(p1)xp2+pq(1q)xq2(p+q)(p+q1)xp+q2p(p1)xp2q(q1)xq2==pq2
Commented by Saorey last updated on 23/Oct/18
can you calculate it without lopital?
canyoucalculateitwithoutlopital?
Answered by ajfour last updated on 24/Oct/18
L=lim_(x→1) {(p/(1−[1−(1−x)]^p ))−(q/(1−[1−(1−x)]^q ))}    = lim_(h→0) {(p/(1−(1−ph+((p(p−1)h^2 )/2)−..)))−(q/(1−(1−qh+((q(q−1)h^2 )/2)−..)))}  ⇒   L = lim_(h→0) {(1/h)[(1/(1−(((p−1)h)/2)))−(1/(1−(((q−1)h)/2)))]}    =  lim_(h→0) (1/h)[(((1−(((q−1)h)/2))−(1−(((p−1)h)/2)))/((1−(((p−1)h)/2))(1−(((q−1)h)/2))))]      =(((((p−q)/2)))/1)  =((p−q)/2) .
L=limx1{p1[1(1x)]pq1[1(1x)]q}=limh0{p1(1ph+p(p1)h22..)q1(1qh+q(q1)h22..)}L=limh0{1h[11(p1)h211(q1)h2]}=limh01h[(1(q1)h2)(1(p1)h2)(1(p1)h2)(1(q1)h2)]=(pq2)1=pq2.

Leave a Reply

Your email address will not be published. Required fields are marked *