Menu Close

please-help-me-prouve-that-0-1-lnt-t-2-1-dt-pi-2-8-




Question Number 164419 by akornes last updated on 16/Jan/22
please help me  prouve that ∫_0 ^1 ((lnt)/(t^2 −1))dt=(π^2 /8)
pleasehelpmeprouvethat01lntt21dt=π28
Answered by Ar Brandon last updated on 17/Jan/22
I=∫_0 ^1 ((lnt)/(t^2 −1))dt=−Σ_(n=0) ^∞ ∫_0 ^1 t^(2n) lntdt , (∵(1/(1−α))=Σ_(n=0) ^∞ α^n )   { ((u(t)=lnt)),((v′(t)=t^(2n) )) :} ⇒ { ((u′(t)=(1/t))),((v(t)=(t^(2n+1) /(2n+1)))) :}  I=−Σ_(n=0) ^∞ {[(t^(2n+1) /(2n+1))lnt]_0 ^1 −(1/(2n+1))∫_0 ^1 t^(2n) dt}     =Σ_(n=0) ^∞ (1/(2n+1))[(t^(2n+1) /(2n+1))]_0 ^1 =Σ_(n=0) ^∞ (1/((2n+1)^2 ))=(3/4)ζ(2)=(π^2 /8)
I=01lntt21dt=n=001t2nlntdt,(11α=n=0αn){u(t)=lntv(t)=t2n{u(t)=1tv(t)=t2n+12n+1I=n=0{[t2n+12n+1lnt]0112n+101t2ndt}=n=012n+1[t2n+12n+1]01=n=01(2n+1)2=34ζ(2)=π28

Leave a Reply

Your email address will not be published. Required fields are marked *