Question Number 164419 by akornes last updated on 16/Jan/22
$${please}\:{help}\:{me} \\ $$$${prouve}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnt}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$
Answered by Ar Brandon last updated on 17/Jan/22
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{t}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}{n}} \mathrm{ln}{tdt}\:,\:\left(\because\frac{\mathrm{1}}{\mathrm{1}−\alpha}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\alpha^{{n}} \right) \\ $$$$\begin{cases}{{u}\left({t}\right)=\mathrm{ln}{t}}\\{{v}'\left({t}\right)={t}^{\mathrm{2}{n}} }\end{cases}\:\Rightarrow\begin{cases}{{u}'\left({t}\right)=\frac{\mathrm{1}}{{t}}}\\{{v}\left({t}\right)=\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}}\end{cases} \\ $$$${I}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\left[\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\mathrm{ln}{t}\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}{n}} {dt}\right\} \\ $$$$\:\:\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\left[\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{4}}\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$