please-help-me-prouve-that-0-1-lnt-t-2-1-dt-pi-2-8- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 164419 by akornes last updated on 16/Jan/22 pleasehelpmeprouvethat∫01lntt2−1dt=π28 Answered by Ar Brandon last updated on 17/Jan/22 I=∫01lntt2−1dt=−∑∞n=0∫01t2nlntdt,(∵11−α=∑∞n=0αn){u(t)=lntv′(t)=t2n⇒{u′(t)=1tv(t)=t2n+12n+1I=−∑∞n=0{[t2n+12n+1lnt]01−12n+1∫01t2ndt}=∑∞n=012n+1[t2n+12n+1]01=∑∞n=01(2n+1)2=34ζ(2)=π28 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-the-sequence-u-n-n-N-defined-by-1-2-n-if-n-0mod-3-1-3-n-1-if-n-1mod-3-u-n-1-u-n-2-2-if-n-2mod-3-a-Determine-the-first-8-th-terms-of-u-n-n-NNext Next post: if-a-b-c-lt-0-and-a-b-c-3-prove-that-1-b-a-1-b-2-1-c-b-1-c-2-1-a-c-1-a-2-8- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.