Question Number 50299 by OTCHRRE ABDULLAI last updated on 15/Dec/18
$${please}\:{help}\:{me}\:{solve}\:{these}\:{two} \\ $$$${questions}\: \\ $$$$\mathrm{1}.\:{A}\:{magician}\:{cuts}\:{a}\:{rope}\:{into}\:{two}\: \\ $$$$\:\:{parts}\:{at}\:{a}\:{point}\:{selected}\:{at}\: \\ $$$${random}.\:{what}\:{is}\:{the}\:{probability}\:{that} \\ $$$${the}\:{length}\:{of}\:\:{the}\:{longer}\:\:{rope}\:{is}\:{at}\:{least}\: \\ $$$$\mathrm{8}\:{times}\:{the}\:{length}\:{of}\:{the}\:{shorter}\: \\ $$$${rope}. \\ $$$$\mathrm{2}.\:{find}\:{the}\:{sum}\:{of}\:{co}−{efficient}\:{of}\: \\ $$$${thebinomial}\:\:{expansion}\:\:{of}\:\: \\ $$$$\left(\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{16}} \\ $$$$ \\ $$
Commented by OTCHRRE ABDULLAI last updated on 16/Dec/18
$${please}\:{sir}\:{i}\:{had}\:{the}\:{probability}\:{to}\:{be}\: \\ $$$$\mathrm{1}−\frac{\mathrm{5}}{\mathrm{9}}=\mathrm{0}.\mathrm{444}\: \\ $$$${using}\:{an}\:{idea}\:{from}\:{your}\:{diagram} \\ $$$${please}\:{check}\:{for}\:{me}\:{sir} \\ $$
Commented by Abdo msup. last updated on 15/Dec/18
$${we}\:{have}\:\left(\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{16}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{16}} \:\:{C}_{\mathrm{16}} ^{{k}} \left(\mathrm{4}{x}\right)^{{k}} \left(−\mathrm{1}\right)^{\mathrm{16}−{k}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{16}} \:\:{C}_{\mathrm{16}} ^{{k}} \:\left(−\mathrm{4}\right)^{{k}} \:{x}^{{k}} \:\Rightarrow{sum}\:{of}\:{coefficient}\:{is} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{16}} \:{C}_{\mathrm{16}} ^{{k}} \left(−\mathrm{4}\right)^{{k}} \:=\left(−\mathrm{4}+\mathrm{1}\right)^{\mathrm{16}} \:=\mathrm{3}^{\mathrm{16}} \:. \\ $$
Commented by mr W last updated on 16/Dec/18
$${to}\:{Abdullai}\:{sir}: \\ $$$${now}\:{you}\:{can}\:{also}\:{solve}\:{if}\:{the}\:{question} \\ $$$${is}\:“{what}\:{is}\:{the}\:{probability}\:{that}\:{the} \\ $$$${length}\:{of}\:{the}\:{longer}\:{rope}\:{is}\:{at}\:{least} \\ $$$$\mathrm{6}\:{times}\:{but}\:{at}\:{most}\:\mathrm{9}\:{times}\:{of}\:{the} \\ $$$${shorter}\:{rope}''.\:{can}\:{you}\:{give}\:{it}\:{a}\:{try}? \\ $$
Commented by OTCHRRE ABDULLAI last updated on 16/Dec/18
$${Thank}\:{you}\:{very}\:{much}\:{my}\:{boss} \\ $$$${God}\:{bless}\:{you} \\ $$
Commented by OTCHRRE ABDULLAI last updated on 16/Dec/18
$${i}\:{will}\:{sir} \\ $$
Commented by mr W last updated on 16/Dec/18
$${no}\:{sir}!\:{try}\:{to}\:{draw}\:{a}\:{disgram}\:{which} \\ $$$${shows}\:{the}\:{areas}\:{where}\:{the}\:{cut}\:{can}\:{be} \\ $$$${placed}\:{and}\:{then}\:{calculate}\:{the}\:{sum}\:{of} \\ $$$${these}\:{areas}.\:{the}\:{fraction}\:{of}\:{these}\:{areas} \\ $$$${is}\:{the}\:{result}. \\ $$$${the}\:{result}\:{should}\:{be}\:\frac{\mathrm{3}}{\mathrm{35}},\:{i}\:{think}. \\ $$
Commented by OTCHRRE ABDULLAI last updated on 16/Dec/18
$${ok}\:{sir}\:{thanks} \\ $$
Answered by mr W last updated on 15/Dec/18
$$\left(\mathrm{1}\right) \\ $$$$\mathrm{1}−\frac{\mathrm{7}}{\mathrm{9}}=\frac{\mathrm{2}}{\mathrm{9}}\approx\mathrm{0}.\mathrm{222} \\ $$$$ \\ $$$$\left(\mathrm{2}\right) \\ $$$${Sum}.\:{of}\:{all}\:{coef}.=\left(\mathrm{4}×\mathrm{1}−\mathrm{1}\right)^{\mathrm{16}} =\mathrm{3}^{\mathrm{16}} \\ $$
Commented by mr W last updated on 15/Dec/18
Commented by OTCHRRE ABDULLAI last updated on 15/Dec/18
$${This}\:{man}\:{is}\:{great} \\ $$$${please}\:{can}\:{you}\:{add}\:{explanation}\:{to}\: \\ $$$${question}\:\mathrm{1}\:{for}\:{me} \\ $$
Commented by mr W last updated on 15/Dec/18
$${when}\:{the}\:{cut}\:{is}\:{in}\:{the}\:{red}\:{area},\:{the} \\ $$$${length}\:{of}\:{the}\:{longer}\:{part}\:{is}\:{less}\:{than} \\ $$$${the}\:\mathrm{8}\:{times}\:{of}\:{the}\:{shorter}\:{part},\:{this} \\ $$$${probability}\:{is}\:\mathrm{7}/\mathrm{9}. \\ $$$${when}\:{the}\:{cut}\:{is}\:{in}\:{the}\:{green}\:{areas},\:{the} \\ $$$${length}\:{of}\:{the}\:{longer}\:{part}\:{is}\:{at}\:{least} \\ $$$$\mathrm{8}\:{times}\:{of}\:{the}\:{shorter}\:{part},\:{this} \\ $$$${probability}\:{is}\:\mathrm{1}−\mathrm{7}/\mathrm{9}=\mathrm{2}/\mathrm{9}=\mathrm{0}.\mathrm{222} \\ $$
Commented by Cheyboy last updated on 15/Dec/18
$$\mathrm{Thank}\:\mathrm{alot}\:\mathrm{Sir}\:\mathrm{I}\:\mathrm{have}\:\mathrm{learn}\:\mathrm{from}\:\mathrm{it}. \\ $$$$ \\ $$
Commented by OTCHRRE ABDULLAI last updated on 15/Dec/18
$${In}\:{fact}\:{mr}\:{W}\:\:{you}\:{are}\:{great}\:{God}\:{bless}\:{you} \\ $$
Commented by mr W last updated on 15/Dec/18
$${thanks}\:{alot}\:{sirs}! \\ $$
Commented by peter frank last updated on 15/Dec/18
$$\mathrm{yeah}\:\mathrm{true}\:\:\mathrm{he}\:\mathrm{is}\:\mathrm{among}\:\mathrm{of}\:\mathrm{best} \\ $$$$\mathrm{solver}\:\mathrm{in}\:\mathrm{this}\:\mathrm{forum}\:\:\mathrm{i}\:\mathrm{real}\:\mathrm{appriciate}\:\mathrm{him}\:\mathrm{and}\:\mathrm{GOD}\:\mathrm{bless}\:\mathrm{him} \\ $$