Menu Close

please-help-with-workings-Ln-1-x-1-x-dx-




Question Number 64382 by Chi Mes Try last updated on 17/Jul/19
please  help with workings    ∫Ln[(√)(1−x)+(√)(1+x)]dx
$${please}\:\:{help}\:{with}\:{workings} \\ $$$$ \\ $$$$\int{Ln}\left[\sqrt{}\left(\mathrm{1}−{x}\right)+\sqrt{}\left(\mathrm{1}+{x}\right)\right]{dx} \\ $$
Answered by MJS last updated on 17/Jul/19
first step: by parts  u′=1 → u=x  v=ln ((√(1−x))+(√(1+x))) → v′=(1/(2x))−(1/(2x(√(1−x^2 ))))  ∫u′v=uv−∫uv′=xln ((√(1−x))+(√(1+x))) −∫((1/2)−(1/(2(√(1−x^2 )))))dx  second step: standard integrals  −(1/2)∫dx+(1/2)∫(dx/( (√(1−x^2 ))))=−(x/2)+(1/2)arcsin x    ∫ln ((√(1−x))+(√(1+x))) dx=−(x/2)+xln ((√(1−x))+(√(1+x))) +(1/2)arcsin x +C
$$\mathrm{first}\:\mathrm{step}:\:\mathrm{by}\:\mathrm{parts} \\ $$$${u}'=\mathrm{1}\:\rightarrow\:{u}={x} \\ $$$${v}=\mathrm{ln}\:\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)\:\rightarrow\:{v}'=\frac{\mathrm{1}}{\mathrm{2}{x}}−\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\int{u}'{v}={uv}−\int{uv}'={x}\mathrm{ln}\:\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)\:−\int\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right){dx} \\ $$$$\mathrm{second}\:\mathrm{step}:\:\mathrm{standard}\:\mathrm{integrals} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\int{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arcsin}\:{x} \\ $$$$ \\ $$$$\int\mathrm{ln}\:\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)\:{dx}=−\frac{{x}}{\mathrm{2}}+{x}\mathrm{ln}\:\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arcsin}\:{x}\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *