Menu Close

please-I-am-confiouse-1-and-2-1-x-dx-2-with-F-x-f-x-f-x-dx-




Question Number 130255 by stelor last updated on 23/Jan/21
please  .... I am confiouse....   1 and 2.  1.       ∫∣x∣dx = ? ?  2.     with (F(x))^′  =f(x)                ∫∣f(x)∣dx = ??
$$\mathrm{please}\:\:….\:\mathrm{I}\:\mathrm{am}\:\mathrm{confiouse}….\:\:\:\mathrm{1}\:\mathrm{and}\:\mathrm{2}. \\ $$$$\mathrm{1}.\:\:\:\:\:\:\:\int\mid{x}\mid\mathrm{d}{x}\:=\:?\:? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{with}\:\left(\mathrm{F}\left({x}\right)\right)^{'} \:=\mathrm{f}\left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\mid\mathrm{f}\left({x}\right)\mid{dx}\:=\:?? \\ $$$$ \\ $$
Answered by Olaf last updated on 23/Jan/21
∫∣x∣dx =  { ((−(1/2)x^2 +C, x ≤ 0)),((+(1/2)x^2 +C, x ≥ 0)) :}  ⇒ ∫∣x∣dx = (1/2)x∣x∣+C    ∫∣f(x)∣dx =  { ((−F(x)+C, f(x) ≤ 0)),((+F(x)+C, f(x) ≥ 0)) :}
$$\int\mid{x}\mid{dx}\:=\:\begin{cases}{−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\mathrm{C},\:{x}\:\leqslant\:\mathrm{0}}\\{+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\mathrm{C},\:{x}\:\geqslant\:\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\:\int\mid{x}\mid{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{x}\mid{x}\mid+\mathrm{C} \\ $$$$ \\ $$$$\int\mid{f}\left({x}\right)\mid{dx}\:=\:\begin{cases}{−\mathrm{F}\left({x}\right)+\mathrm{C},\:{f}\left({x}\right)\:\leqslant\:\mathrm{0}}\\{+\mathrm{F}\left({x}\right)+\mathrm{C},\:{f}\left({x}\right)\:\geqslant\:\mathrm{0}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *