Menu Close

please-I-need-help-e-x-1-e-2x-1-dx-




Question Number 130226 by stelor last updated on 23/Jan/21
please I need help...  ∫(((e^x +1)/(e^(2x) +1)))dx
pleaseIneedhelp(ex+1e2x+1)dx
Answered by Lordose last updated on 23/Jan/21
Ω =^(u=e^x ) ∫((u+1)/(u(u^2 +1)))du = ∫(1/(u^2 +1))du + ∫(1/(u(u^2 +1)))du         Ω = tan^(−1) (u) + ∫((a/u) + ((bu+c)/(u^2 +1)))du  1 = a(u^2 +1) + u(bu+c)  a = 1  1 = (a+b)u^2  + a +cu  b = −1 , c =0  Ω = tan^(−1) (u) + ∫(1/u)du − ∫(u/(u^2 +1))du  Ω = tan^(−1) (u) + ln(u) − (1/2)ln(u^2 +1) + C  Ω = tan^(−1) (e^x ) + x − (1/2)ln(e^(2x) +1) + C
Ω=u=exu+1u(u2+1)du=1u2+1du+1u(u2+1)duΩ=tan1(u)+(au+bu+cu2+1)du1=a(u2+1)+u(bu+c)a=11=(a+b)u2+a+cub=1,c=0Ω=tan1(u)+1uduuu2+1duΩ=tan1(u)+ln(u)12ln(u2+1)+CΩ=tan1(ex)+x12ln(e2x+1)+C
Commented by stelor last updated on 23/Jan/21
good......
good
Answered by EDWIN88 last updated on 23/Jan/21
let e^x =tan r ∧ dx = ((sec^2 r)/(tan r)) dr ⇒I=∫ (((tan r+1))/(sec^2 r)) (((sec^2 r)/(tan r)))dr  I= ∫ ((tan r+1)/(tan r)) dr = r + ∫ ((cos r)/(sin r)) dr  I=r+∫ ((d(sin r))/(sin r)) = r+ln (sin r)+c  I=tan^(−1) (e^x )+ln ((e^x /( (√(e^(2x) +1)))))+c  I=tan^(−1) (e^x )+x−(1/2)ln (e^(2x) +1)+c
letex=tanrdx=sec2rtanrdrI=(tanr+1)sec2r(sec2rtanr)drI=tanr+1tanrdr=r+cosrsinrdrI=r+d(sinr)sinr=r+ln(sinr)+cI=tan1(ex)+ln(exe2x+1)+cI=tan1(ex)+x12ln(e2x+1)+c
Commented by bramlexs22 last updated on 23/Jan/21
waw...elegant
wawelegant
Commented by stelor last updated on 23/Jan/21
cool...
cool

Leave a Reply

Your email address will not be published. Required fields are marked *