Menu Close

please-in-AB-C-prove-that-cos-A-sin-B-sin-C-cos-B-sin-A-sin-C-cos-C-sin-A-sin-B-2-




Question Number 108573 by mnjuly1970 last updated on 17/Aug/20
         please:   in AB^Δ C prove that:   ((cos(A))/(sin(B)sin(C))) +((cos(B))/(sin(A)sin(C)))+((cos(C))/(sin(A)sin(B))) =2
$$\:\:\:\:\:\:\:\:\:\mathrm{please}:\:\:\:\mathrm{in}\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\:\frac{{cos}\left(\mathrm{A}\right)}{{sin}\left(\mathrm{B}\right){sin}\left(\mathrm{C}\right)}\:+\frac{{cos}\left(\mathrm{B}\right)}{{sin}\left(\mathrm{A}\right){sin}\left(\mathrm{C}\right)}+\frac{{cos}\left(\mathrm{C}\right)}{{sin}\left(\mathrm{A}\right){sin}\left(\mathrm{B}\right)}\:=\mathrm{2}\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Answered by veth last updated on 17/Aug/20
Commented by mnjuly1970 last updated on 17/Aug/20
thanks a lot master.mercey...
$$\mathrm{thanks}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{master}.\mathrm{mercey}… \\ $$
Answered by ajfour last updated on 17/Aug/20
to prove     Σ((sin Acos A)/(sin Asin Bsin C))=2  l.h.s.=(1/2)(((Σsin 2A)/(Πsin A)))   =(1/2)(((2sin (A+B)cos (A−B)+sin 2C)/(Πsin A)))  =((cos (A−B)+cos C)/(sin Asin B))  =2[((cos (A−B)+cos C)/(cos (A−B)−cos (A+B)))]  =2[((cos (A−B)+cos C)/(cos (A−B)+cos C))]  = 2 .
$${to}\:{prove}\:\:\:\:\:\Sigma\frac{\mathrm{sin}\:{A}\mathrm{cos}\:{A}}{\mathrm{sin}\:{A}\mathrm{sin}\:{B}\mathrm{sin}\:{C}}=\mathrm{2} \\ $$$${l}.{h}.{s}.=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\Sigma\mathrm{sin}\:\mathrm{2}{A}}{\Pi\mathrm{sin}\:{A}}\right) \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2sin}\:\left({A}+{B}\right)\mathrm{cos}\:\left({A}−{B}\right)+\mathrm{sin}\:\mathrm{2}{C}}{\Pi\mathrm{sin}\:{A}}\right) \\ $$$$=\frac{\mathrm{cos}\:\left({A}−{B}\right)+\mathrm{cos}\:{C}}{\mathrm{sin}\:{A}\mathrm{sin}\:{B}} \\ $$$$=\mathrm{2}\left[\frac{\mathrm{cos}\:\left({A}−{B}\right)+\mathrm{cos}\:{C}}{\mathrm{cos}\:\left({A}−{B}\right)−\mathrm{cos}\:\left({A}+{B}\right)}\right] \\ $$$$=\mathrm{2}\left[\frac{\mathrm{cos}\:\left({A}−{B}\right)+\mathrm{cos}\:{C}}{\mathrm{cos}\:\left({A}−{B}\right)+\mathrm{cos}\:{C}}\right]\:\:=\:\mathrm{2}\:. \\ $$
Commented by mnjuly1970 last updated on 17/Aug/20
god bless you master .thanks a lot
$$\mathrm{god}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{master}\:.\mathrm{thanks}\:\mathrm{a}\:\mathrm{lot} \\ $$
Answered by nimnim last updated on 17/Aug/20
    A+B+C=π.   LHS((cosA)/(sinBsinC))−((cos(B+C))/(sinAsinC))−((cos(A+B))/(sinAsinB))    =((cosA)/(sinBsinC))−[((cosAcosC−sinAsinC)/(sinAsinC))+((cosAcosB−sinAsinB)/(sinAsinB))]    =((cosA)/(sinBsinC))−[((cosAcosC)/(sinAsinC))−1+((cosAcosB)/(sinAsinB))−1]    =((cosA)/(sinBsinC))−cosA[((sinBcosC+cosBsinC)/(sinAsinBsinC))]+2    =((cosA)/(sinBsinC))−((cosAsin(B+C))/(sin(B+C)sinBsinC))+2    =((cosA)/(sinBsinC))−((cosA)/(sinBsinC))+2    =2(RHS)
$$\:\:\:\:{A}+{B}+{C}=\pi.\: \\ $$$${LHS}\frac{{cosA}}{{sinBsinC}}−\frac{{cos}\left({B}+{C}\right)}{{sinAsinC}}−\frac{{cos}\left({A}+{B}\right)}{{sinAsinB}} \\ $$$$\:\:=\frac{{cosA}}{{sinBsinC}}−\left[\frac{{cosAcosC}−{sinAsinC}}{{sinAsinC}}+\frac{{cosAcosB}−{sinAsinB}}{{sinAsinB}}\right] \\ $$$$\:\:=\frac{{cosA}}{{sinBsinC}}−\left[\frac{{cosAcosC}}{{sinAsinC}}−\mathrm{1}+\frac{{cosAcosB}}{{sinAsinB}}−\mathrm{1}\right] \\ $$$$\:\:=\frac{{cosA}}{{sinBsinC}}−{cosA}\left[\frac{{sinBcosC}+{cosBsinC}}{{sinAsinBsinC}}\right]+\mathrm{2} \\ $$$$\:\:=\frac{{cosA}}{{sinBsinC}}−\frac{{cosAsin}\left({B}+{C}\right)}{{sin}\left({B}+{C}\right){sinBsinC}}+\mathrm{2} \\ $$$$\:\:=\frac{{cosA}}{{sinBsinC}}−\frac{{cosA}}{{sinBsinC}}+\mathrm{2} \\ $$$$\:\:=\mathrm{2}\left({RHS}\right) \\ $$
Commented by mnjuly1970 last updated on 17/Aug/20
thank you very much my dear  friend.peace be upon you ...
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear} \\ $$$$\mathrm{friend}.\mathrm{peace}\:\mathrm{be}\:\mathrm{upon}\:\mathrm{you}\:… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *