Question Number 108573 by mnjuly1970 last updated on 17/Aug/20

Answered by veth last updated on 17/Aug/20

Commented by mnjuly1970 last updated on 17/Aug/20

Answered by ajfour last updated on 17/Aug/20
![to prove Σ((sin Acos A)/(sin Asin Bsin C))=2 l.h.s.=(1/2)(((Σsin 2A)/(Πsin A))) =(1/2)(((2sin (A+B)cos (A−B)+sin 2C)/(Πsin A))) =((cos (A−B)+cos C)/(sin Asin B)) =2[((cos (A−B)+cos C)/(cos (A−B)−cos (A+B)))] =2[((cos (A−B)+cos C)/(cos (A−B)+cos C))] = 2 .](https://www.tinkutara.com/question/Q108580.png)
Commented by mnjuly1970 last updated on 17/Aug/20

Answered by nimnim last updated on 17/Aug/20
![A+B+C=π. LHS((cosA)/(sinBsinC))−((cos(B+C))/(sinAsinC))−((cos(A+B))/(sinAsinB)) =((cosA)/(sinBsinC))−[((cosAcosC−sinAsinC)/(sinAsinC))+((cosAcosB−sinAsinB)/(sinAsinB))] =((cosA)/(sinBsinC))−[((cosAcosC)/(sinAsinC))−1+((cosAcosB)/(sinAsinB))−1] =((cosA)/(sinBsinC))−cosA[((sinBcosC+cosBsinC)/(sinAsinBsinC))]+2 =((cosA)/(sinBsinC))−((cosAsin(B+C))/(sin(B+C)sinBsinC))+2 =((cosA)/(sinBsinC))−((cosA)/(sinBsinC))+2 =2(RHS)](https://www.tinkutara.com/question/Q108585.png)
Commented by mnjuly1970 last updated on 17/Aug/20
