Menu Close

please-in-AB-C-prove-that-cos-A-sin-B-sin-C-cos-B-sin-A-sin-C-cos-C-sin-A-sin-B-2-




Question Number 108573 by mnjuly1970 last updated on 17/Aug/20
         please:   in AB^Δ C prove that:   ((cos(A))/(sin(B)sin(C))) +((cos(B))/(sin(A)sin(C)))+((cos(C))/(sin(A)sin(B))) =2
please:inABCΔprovethat:cos(A)sin(B)sin(C)+cos(B)sin(A)sin(C)+cos(C)sin(A)sin(B)=2
Answered by veth last updated on 17/Aug/20
Commented by mnjuly1970 last updated on 17/Aug/20
thanks a lot master.mercey...
thanksalotmaster.mercey
Answered by ajfour last updated on 17/Aug/20
to prove     Σ((sin Acos A)/(sin Asin Bsin C))=2  l.h.s.=(1/2)(((Σsin 2A)/(Πsin A)))   =(1/2)(((2sin (A+B)cos (A−B)+sin 2C)/(Πsin A)))  =((cos (A−B)+cos C)/(sin Asin B))  =2[((cos (A−B)+cos C)/(cos (A−B)−cos (A+B)))]  =2[((cos (A−B)+cos C)/(cos (A−B)+cos C))]  = 2 .
toproveΣsinAcosAsinAsinBsinC=2l.h.s.=12(Σsin2AΠsinA)=12(2sin(A+B)cos(AB)+sin2CΠsinA)=cos(AB)+cosCsinAsinB=2[cos(AB)+cosCcos(AB)cos(A+B)]=2[cos(AB)+cosCcos(AB)+cosC]=2.
Commented by mnjuly1970 last updated on 17/Aug/20
god bless you master .thanks a lot
godblessyoumaster.thanksalot
Answered by nimnim last updated on 17/Aug/20
    A+B+C=π.   LHS((cosA)/(sinBsinC))−((cos(B+C))/(sinAsinC))−((cos(A+B))/(sinAsinB))    =((cosA)/(sinBsinC))−[((cosAcosC−sinAsinC)/(sinAsinC))+((cosAcosB−sinAsinB)/(sinAsinB))]    =((cosA)/(sinBsinC))−[((cosAcosC)/(sinAsinC))−1+((cosAcosB)/(sinAsinB))−1]    =((cosA)/(sinBsinC))−cosA[((sinBcosC+cosBsinC)/(sinAsinBsinC))]+2    =((cosA)/(sinBsinC))−((cosAsin(B+C))/(sin(B+C)sinBsinC))+2    =((cosA)/(sinBsinC))−((cosA)/(sinBsinC))+2    =2(RHS)
A+B+C=π.LHScosAsinBsinCcos(B+C)sinAsinCcos(A+B)sinAsinB=cosAsinBsinC[cosAcosCsinAsinCsinAsinC+cosAcosBsinAsinBsinAsinB]=cosAsinBsinC[cosAcosCsinAsinC1+cosAcosBsinAsinB1]=cosAsinBsinCcosA[sinBcosC+cosBsinCsinAsinBsinC]+2=cosAsinBsinCcosAsin(B+C)sin(B+C)sinBsinC+2=cosAsinBsinCcosAsinBsinC+2=2(RHS)
Commented by mnjuly1970 last updated on 17/Aug/20
thank you very much my dear  friend.peace be upon you ...
thankyouverymuchmydearfriend.peacebeuponyou

Leave a Reply

Your email address will not be published. Required fields are marked *