Menu Close

Please-in-an-arithmetic-mean-a-A-1-A-2-A-3-A-n-b-where-A-1-A-2-A-3-A-n-are-nth-arithmetic-mean-why-is-b-n-2-th-term-like-T-n-2-Please-




Question Number 93220 by I want to learn more last updated on 11/May/20
Please in an arithmetic mean         a,  A_1 , A_2 , A_3 , ... , A_n , b  where   A_1 , A_2 , A_3 , ... , A_n   are nth arithmetic mean  why is  b  =  (n  +  2)th  term:  like  T_(n  +  2)   Please
$$\mathrm{Please}\:\mathrm{in}\:\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{mean} \\ $$$$\:\:\:\:\:\:\:\mathrm{a},\:\:\mathrm{A}_{\mathrm{1}} ,\:\mathrm{A}_{\mathrm{2}} ,\:\mathrm{A}_{\mathrm{3}} ,\:…\:,\:\mathrm{A}_{\mathrm{n}} ,\:\mathrm{b} \\ $$$$\mathrm{where}\:\:\:\mathrm{A}_{\mathrm{1}} ,\:\mathrm{A}_{\mathrm{2}} ,\:\mathrm{A}_{\mathrm{3}} ,\:…\:,\:\mathrm{A}_{\mathrm{n}} \:\:\mathrm{are}\:\mathrm{nth}\:\mathrm{arithmetic}\:\mathrm{mean} \\ $$$$\mathrm{why}\:\mathrm{is}\:\:\mathrm{b}\:\:=\:\:\left(\mathrm{n}\:\:+\:\:\mathrm{2}\right)\mathrm{th}\:\:\mathrm{term}:\:\:\mathrm{like}\:\:\mathrm{T}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \\ $$$$\mathrm{Please} \\ $$
Commented by Rasheed.Sindhi last updated on 12/May/20
 determinant ((T_1 ,T_2 ,T_3 ,(...),T_n ,T_(n+1) ,T_(n+2) ),(a,A_1 ,A_2 ,(...),A_(n−1) ,A_n ,b))
$$\begin{vmatrix}{{T}_{\mathrm{1}} }&{{T}_{\mathrm{2}} }&{{T}_{\mathrm{3}} }&{…}&{{T}_{{n}} }&{{T}_{{n}+\mathrm{1}} }&{{T}_{{n}+\mathrm{2}} }\\{{a}}&{{A}_{\mathrm{1}} }&{{A}_{\mathrm{2}} }&{…}&{{A}_{{n}−\mathrm{1}} }&{{A}_{{n}} }&{{b}}\end{vmatrix} \\ $$
Commented by Rasheed.Sindhi last updated on 11/May/20
  Account of terms in the AP  number of AMs                 n  number of first terms   1  number of last terms      1           _(−)                          Total terms           n+2  Hence last term  b=(n+2)th term
$$\:\:{Account}\:{of}\:{terms}\:{in}\:{the}\:{AP} \\ $$$${number}\:{of}\:{AMs}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{n} \\ $$$${number}\:{of}\:{first}\:{terms}\:\:\:\mathrm{1} \\ $$$$\underset{−} {{number}\:{of}\:{last}\:{terms}\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Total}\:{terms}\:\:\:\:\:\:\:\:\:\:\:{n}+\mathrm{2} \\ $$$${Hence}\:{last}\:{term}\:\:{b}=\left({n}+\mathrm{2}\right){th}\:{term} \\ $$$$ \\ $$
Commented by I want to learn more last updated on 11/May/20
I appreciate sir.
$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$
Commented by I want to learn more last updated on 11/May/20
Sir please show me how the term goes on:  like     T_1  + T_2  + ... + T_(n − 1)  + T_n  + ... + T_(n + 1)  + T_(n + 2)   Am i right
$$\mathrm{Sir}\:\mathrm{please}\:\mathrm{show}\:\mathrm{me}\:\mathrm{how}\:\mathrm{the}\:\mathrm{term}\:\mathrm{goes}\:\mathrm{on}: \\ $$$$\mathrm{like}\:\:\:\:\:\mathrm{T}_{\mathrm{1}} \:+\:\mathrm{T}_{\mathrm{2}} \:+\:…\:+\:\mathrm{T}_{\mathrm{n}\:−\:\mathrm{1}} \:+\:\mathrm{T}_{\mathrm{n}} \:+\:…\:+\:\mathrm{T}_{\mathrm{n}\:+\:\mathrm{1}} \:+\:\mathrm{T}_{\mathrm{n}\:+\:\mathrm{2}} \\ $$$$\mathrm{Am}\:\mathrm{i}\:\mathrm{right} \\ $$
Commented by I want to learn more last updated on 12/May/20
I understand sir. I appreciate
$$\mathrm{I}\:\mathrm{understand}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *