Menu Close

Please-integrate-0-1-1-1-x-c-dx-where-c-is-a-constant-




Question Number 118674 by mathace last updated on 19/Oct/20
Please integrate  ∫_0 ^1 (1/(1+x^c ))dx where c is a constant.
Pleaseintegrate0111+xcdxwherecisaconstant.
Answered by Dwaipayan Shikari last updated on 19/Oct/20
∫_0 ^1 Σ_(n=0) ^∞ (−1)^n .x^(nc) dx  Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(nc) dx         [ (1/(1+x^c ))=Σ_(n=0) ^∞ (−1)^n .x^(nc) ]  Σ_(n=0) ^∞ (−1)^n [(x^(nc+1) /(nc+1))]_0 ^1   Σ_(n=0) ^∞ (−1)^n .(1/(nc+1))
01n=0(1)n.xncdxn=0(1)n01xncdx[11+xc=n=0(1)n.xnc]n=0(1)n[xnc+1nc+1]01n=0(1)n.1nc+1
Commented by Dwaipayan Shikari last updated on 19/Oct/20
When  c=2  Σ_(n=0) ^∞ (−1)^n (1/(2n+1))=1−(1/3)+(1/5)−(1/7)+...=(π/4)  ∫_0 ^1 (1/(1+x^2 ))dx=[tan^(−1) x]_0 ^1 =(π/4)
Whenc=2n=0(1)n12n+1=113+1517+=π40111+x2dx=[tan1x]01=π4
Commented by mathace last updated on 19/Oct/20
Can you explain details how it comes  (1/(1+x^c ))= Σ_(n=0) ^∞ (−1)^n .x^(nc)   sir?
Canyouexplaindetailshowitcomes11+xc=n=0(1)n.xncsir?
Commented by Dwaipayan Shikari last updated on 19/Oct/20
1+x+x^2 +x^3 +x^4 +.....=(1/(1−x))=(T_1 /(1−R))         (T_1 = first term  R=common Ratio)  Σ_(n=0) ^∞ (−1)^n x^n =1−x+x^2 −x^3 +x^4 −x^5 +...=(1/(1+x))     (Here common Ratio (−x))  1−x^c +x^(2c) −x^(3c) +...=(1/(1+x^c ))   (Common Ratio (−x^c )  Σ_(n=0) ^∞ (−1)^n x^(nc) =(1/(1+x^c ))
1+x+x2+x3+x4+..=11x=T11R(T1=firsttermR=commonRatio)n=0(1)nxn=1x+x2x3+x4x5+=11+x(HerecommonRatio(x))1xc+x2cx3c+=11+xc(CommonRatio(xc)n=0(1)nxnc=11+xc
Commented by mathace last updated on 19/Oct/20
Wow! great. Thank you. Valid for ∣x∣<1
Wow!great.Thankyou.Validforx∣<1
Commented by Dwaipayan Shikari last updated on 19/Oct/20
yes!
yes!
Commented by Ar Brandon last updated on 19/Oct/20
��

Leave a Reply

Your email address will not be published. Required fields are marked *