Question Number 56479 by Tawa1 last updated on 17/Mar/19
$$\mathrm{Please}\:\mathrm{is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{way}\:\mathrm{to}\:\mathrm{reduce}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{of}\:\:\mathrm{4th}\:\mathrm{degree} \\ $$$$\mathrm{and}\:\mathrm{solve}.\:\:\mathrm{Or}\:\mathrm{probably}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{of}\:\:\:\mathrm{nth}\:\mathrm{power}\:\mathrm{to}\:\mathrm{smaller} \\ $$$$\mathrm{power}.\: \\ $$
Answered by ajfour last updated on 17/Mar/19
$$ \\ $$$$ \\ $$$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$${let}\:\:{x}={t}−\frac{{a}}{\mathrm{4}} \\ $$$${t}^{\mathrm{4}} −{at}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{8}}{a}^{\mathrm{2}} {t}^{\mathrm{2}} −\frac{{a}^{\mathrm{3}} }{\mathrm{16}}{t}+\frac{{a}^{\mathrm{4}} }{\mathrm{256}} \\ $$$$+{at}^{\mathrm{3}} −\frac{\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{4}}{t}^{\mathrm{2}} +\frac{\mathrm{3}{a}^{\mathrm{3}} }{\mathrm{16}}{t}−\frac{{a}^{\mathrm{4}} }{\mathrm{64}} \\ $$$$+{bt}^{\mathrm{2}} −\frac{{ab}}{\mathrm{2}}{t}+\frac{{a}^{\mathrm{2}} {b}}{\mathrm{16}}+{ct}−\frac{{ac}}{\mathrm{4}}+{d}=\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{4}} +\left({b}−\frac{\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{8}}\right){t}^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{3}} }{\mathrm{8}}−\frac{{ab}}{\mathrm{2}}+{c}\right){t} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\left(\frac{\mathrm{3}{a}^{\mathrm{4}} }{\mathrm{256}}+\frac{{a}^{\mathrm{2}} {b}}{\mathrm{16}}−\frac{{ac}}{\mathrm{4}}+{d}\right)=\mathrm{0} \\ $$$${Say}\:{we}\:{have}\:{now} \\ $$$$\:\:\:\:{t}^{\mathrm{4}} +{Bt}^{\mathrm{2}} +{Ct}+{D} \\ $$$$\:\:\:=\:\left({t}^{\mathrm{2}} +{pt}+{q}\right)\left({t}^{\mathrm{2}} −{pt}+{r}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{4}} +\left({r}−{p}^{\mathrm{2}} +{q}\right){t}^{\mathrm{2}} +{p}\left({r}−{q}\right){t}+{qr}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{q}+{r}={B}+{p}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{r}−{q}={C}/{p} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{qr}={D} \\ $$$$\Rightarrow\:\:\:\mathrm{2}{r}=\left({B}+{p}^{\mathrm{2}} \right)+\frac{{C}}{{p}}\:\:\:\:\:\:\:…\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{q}=\left({B}+{p}^{\mathrm{2}} \right)−\frac{{C}}{{p}}\:\:\:\:\:\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow\:\:\:\:\:\left({B}+{p}^{\mathrm{2}} \right)^{\mathrm{2}} −\frac{{C}^{\:\mathrm{2}} }{{p}^{\mathrm{2}} }=\mathrm{4}{D} \\ $$$$\:\:\:\:{let}\:\:{p}^{\mathrm{2}} ={z} \\ $$$$\Rightarrow\:\:\:{z}\left({B}+{z}\right)^{\mathrm{2}} −\mathrm{4}{Dz}−{C}^{\:\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{z}^{\mathrm{3}} +\mathrm{2}{Bz}^{\mathrm{2}} +\left({B}^{\mathrm{2}} −\mathrm{4}{D}\right){z}−{C}^{\:\mathrm{2}} =\mathrm{0} \\ $$$${Find}\:{z}={p}^{\mathrm{2}} \:{from}\:{above}\:{eq}. \\ $$$${Then}\:{using}\:\left({i}\right)\&\left({ii}\right)\:{obtain} \\ $$$${q}\:{and}\:{r}. \\ $$$${Now}\:{we}\:{have} \\ $$$$\:\:\left({t}^{\mathrm{2}} +{pt}+{q}\right)\left({t}^{\mathrm{2}} −{pt}+{r}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:{t}=−\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}}\:\:\:{or} \\ $$$$\:\:\:\:\:\:\:\:{t}=\:\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{r}}\:\: \\ $$$$\&\:\:\:\:{x}={t}−\frac{{a}}{\mathrm{4}}\:. \\ $$
Commented by Tawa1 last updated on 17/Mar/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\:\mathrm{i}\:\mathrm{look}\:\mathrm{forward}\:\mathrm{for}\:\mathrm{the}\:\mathrm{success}\:\mathrm{sir} \\ $$
Commented by ajfour last updated on 17/Mar/19
$${Or}\:{after}\: \\ $$$$\:\:\:\:\:{t}^{\mathrm{4}} +{Bt}^{\mathrm{2}} +{Ct}+{D}=\mathrm{0} \\ $$$${we}\:{let}\:\:\:\:{x}=\frac{{pt}+{q}}{{t}+\mathrm{1}}\:\:\:{then} \\ $$$$\:\:\left({pt}+{q}\right)^{\mathrm{4}} +{B}\left({pt}+{q}\right)^{\mathrm{2}} \left({t}+\mathrm{1}\right)^{\mathrm{2}} + \\ $$$$\:\:\:\:\:\:\:{C}\left({pt}+{q}\right)\left({t}+\mathrm{1}\right)^{\mathrm{3}} +{D}\left({t}+\mathrm{1}\right)^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\:\:\:{p}^{\mathrm{4}} {t}^{\mathrm{4}} +\mathrm{4}{p}^{\mathrm{3}} {qt}^{\mathrm{3}} +\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{4}{pq}^{\mathrm{3}} {t}+{q}^{\mathrm{4}} \\ $$$$+\:{B}\left({p}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{2}{pqt}+{q}^{\mathrm{2}} \right)\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}\right)+ \\ $$$$\:\:{C}\left({pt}+{q}\right)\left({t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}+\mathrm{1}\right)+ \\ $$$$\:\:{D}\left({t}^{\mathrm{4}} +\mathrm{4}{t}^{\mathrm{3}} +\mathrm{6}{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:\:\left({p}^{\mathrm{4}} +{Bp}^{\mathrm{2}} +{Cp}+{D}\right){t}^{\mathrm{4}} + \\ $$$$\:\:\:\:\left(\mathrm{4}{p}^{\mathrm{3}} {q}+\mathrm{2}{Bp}^{\mathrm{2}} +\mathrm{2}{Bpq}+\mathrm{3}{Cp}+{Cq}+\mathrm{4}{D}\right){t}^{\mathrm{3}} \\ $$$$+\left(\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{Bp}^{\mathrm{2}} +\mathrm{4}{Bpq}+{Bq}^{\mathrm{2}} +\mathrm{3}{Cp}+\mathrm{3}{Cq}+\mathrm{6}{D}\right){t}^{\mathrm{2}} \\ $$$$+\left(\mathrm{4}{pq}^{\mathrm{3}} +\mathrm{2}{Bpq}+\mathrm{2}{Bq}^{\mathrm{2}} +{Cp}+\mathrm{3}{Cq}+\mathrm{4}{D}\right){t} \\ $$$$+\left({q}^{\mathrm{4}} +{Bq}^{\mathrm{2}} +{Cq}+{D}\right)=\mathrm{0} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\&\:{if}\:{we}\:{let}\:{coefficients}\:{of}\:{t}^{\mathrm{3}} \:\&\:{t} \\ $$$${to}\:{be}\:{zero}\:{we}\:{obtain}\:{a}\:{quadratic} \\ $$$${in}\:{t}^{\mathrm{2}} . \\ $$$$\:\mathrm{4}{p}^{\mathrm{3}} {q}+\mathrm{2}{Bp}^{\mathrm{2}} +\mathrm{2}{Bpq}+\mathrm{3}{Cp}+{Cq}+\mathrm{4}{D}=\mathrm{0} \\ $$$$\:\mathrm{4}{pq}^{\mathrm{3}} +\mathrm{2}{Bpq}+\mathrm{2}{Bq}^{\mathrm{2}} +{Cp}+\mathrm{3}{Cq}+\mathrm{4}{D}=\mathrm{0} \\ $$$${subtracting}\:{we}\:{get} \\ $$$$\:\mathrm{4}{pq}\left({p}+{q}\right)+\mathrm{2}{B}\left({p}+{q}\right)+\mathrm{2}{C}=\mathrm{0}\:\:..\left({I}\right) \\ $$$${And}\:{adding}\:{we}\:{get} \\ $$$$\left(\mathrm{4}{pq}+\mathrm{2}{B}\right)\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+\mathrm{4}{Bpq}+ \\ $$$$\:\:\:\:\:\:\mathrm{4}{C}\left({p}+{q}\right)+\mathrm{8}{D}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\left({II}\right) \\ $$$${Solving}\:{this}\:{pair} \\ $$$${of}\:{eqs}.\:\left({I}\right)\&\left({II}\right), \\ $$$$\:{we}'{d}\:{have}\:{reduced}\:{a}\: \\ $$$${biquadratic}\:{to}\:{a}\:{quadratic}. \\ $$$${rewriting}\:{eq}.\:\left({II}\right) \\ $$$$\left(\mathrm{4}{pq}+\mathrm{2}{B}\right)\left[\left({p}+{q}\right)^{\mathrm{2}} −\mathrm{2}{pq}\right]+\mathrm{4}{Bpq} \\ $$$$\:\:\:\:\:\:\:+\mathrm{4}{C}\left({p}+{q}\right)+\mathrm{8}{D}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{4}{C}\left({p}+{q}\right)+\mathrm{8}{D}=−\left(\mathrm{4}{pq}+\mathrm{2}{B}\right)\left({p}+{q}\right)^{\mathrm{2}} \\ $$$${using}\:\left({I}\right)\:{herein} \\ $$$$\Rightarrow\:\mathrm{4}{C}\left({p}+{q}\right)+\mathrm{8}{D}=\mathrm{2}\left({p}+{q}\right)\left[{C}+{B}\left({p}+{q}\right)\right] \\ $$$$\Rightarrow\:{B}\left({p}+{q}\right)^{\mathrm{2}} −{C}\left({p}+{q}\right)−\mathrm{4}{D}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{p}+{q}\:=\:\frac{{C}}{\mathrm{2}}\pm\sqrt{\frac{{C}^{\:\mathrm{2}} }{\mathrm{4}}+\mathrm{4}{D}}\:\:=\:{k} \\ $$$$\:\:\:\:{pq}\:=\:−\frac{{B}}{\mathrm{2}}−\frac{{C}}{\mathrm{2}\left({p}+{q}\right)}\: \\ $$$$\:\:\:\:\:\:\:\:\:=\:−\frac{{B}}{\mathrm{2}}−\frac{{C}}{\mathrm{2}{k}}\:=\:{l} \\ $$$$\:{p},\:{q}\:{are}\:{roots}\:{of} \\ $$$$\:\:\:\:\:\:\:\:\:{z}^{\mathrm{2}} −{kz}+{l}=\mathrm{0} \\ $$$${p},\:{q}\:=\:\frac{{k}}{\mathrm{2}}\pm\sqrt{\frac{{k}^{\mathrm{2}} }{\mathrm{4}}−{l}} \\ $$$${Now}\:{we}\:{have} \\ $$$$\:\:\:\left({p}^{\mathrm{4}} +{Bp}^{\mathrm{2}} +{Cp}+{D}\right){t}^{\mathrm{4}} \\ $$$$+\left(\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{Bp}^{\mathrm{2}} +\mathrm{4}{Bpq}+{Bq}^{\mathrm{2}} +\mathrm{3}{Cp}+\mathrm{3}{Cq}+\mathrm{6}{D}\right){t}^{\mathrm{2}} \\ $$$$+\left({q}^{\mathrm{4}} +{Bq}^{\mathrm{2}} +{Cq}+{D}\right)=\mathrm{0} \\ $$$$\:\:\:{which}\:{is}\:{a}\:{quadratic}\:{in}\:{t}^{\mathrm{2}} , \\ $$$${and}\:{can}\:{be}\:{solved}. \\ $$$${And}\:\:\:{x}=\frac{{pt}+{q}}{{t}+\mathrm{1}}.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$
Commented by Tawa1 last updated on 17/Mar/19
$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:… \\ $$
Commented by Tawa1 last updated on 17/Mar/19
$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{if}\:\mathrm{the}\:\mathrm{power}\:\mathrm{is}\:\:\mathrm{5}\:\mathrm{or}\:\mathrm{higher}.\:\mathrm{can}\:\mathrm{we}\:\mathrm{still}\:\mathrm{deduce}. \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$