Menu Close

Please-is-there-any-way-to-reduce-a-polynomial-of-4th-degree-and-solve-Or-probably-a-polynomial-of-nth-power-to-smaller-power-




Question Number 56479 by Tawa1 last updated on 17/Mar/19
Please is there any way to reduce a polynomial of  4th degree  and solve.  Or probably a polynomial of   nth power to smaller  power.
Pleaseisthereanywaytoreduceapolynomialof4thdegreeandsolve.Orprobablyapolynomialofnthpowertosmallerpower.
Answered by ajfour last updated on 17/Mar/19
    x^4 +ax^3 +bx^2 +cx+d=0  let  x=t−(a/4)  t^4 −at^3 +(3/8)a^2 t^2 −(a^3 /(16))t+(a^4 /(256))  +at^3 −((3a^2 )/4)t^2 +((3a^3 )/(16))t−(a^4 /(64))  +bt^2 −((ab)/2)t+((a^2 b)/(16))+ct−((ac)/4)+d=0  ⇒  t^4 +(b−((3a^2 )/8))t^2 +((a^3 /8)−((ab)/2)+c)t             +(((3a^4 )/(256))+((a^2 b)/(16))−((ac)/4)+d)=0  Say we have now      t^4 +Bt^2 +Ct+D     = (t^2 +pt+q)(t^2 −pt+r)=0  ⇒  t^4 +(r−p^2 +q)t^2 +p(r−q)t+qr=0  ⇒   q+r=B+p^2           r−q=C/p                   qr=D  ⇒   2r=(B+p^2 )+(C/p)       ...(i)         2q=(B+p^2 )−(C/p)        ...(ii)  ⇒     (B+p^2 )^2 −(C^( 2) /p^2 )=4D      let  p^2 =z  ⇒   z(B+z)^2 −4Dz−C^( 2) =0  ⇒ z^3 +2Bz^2 +(B^2 −4D)z−C^( 2) =0  Find z=p^2  from above eq.  Then using (i)&(ii) obtain  q and r.  Now we have    (t^2 +pt+q)(t^2 −pt+r)=0  ⇒  t=−(p/2)±(√((p^2 /4)−q))   or          t= (p/2)±(√((p^2 /4)−r))    &    x=t−(a/4) .
x4+ax3+bx2+cx+d=0letx=ta4t4at3+38a2t2a316t+a4256+at33a24t2+3a316ta464+bt2ab2t+a2b16+ctac4+d=0t4+(b3a28)t2+(a38ab2+c)t+(3a4256+a2b16ac4+d)=0Saywehavenowt4+Bt2+Ct+D=(t2+pt+q)(t2pt+r)=0t4+(rp2+q)t2+p(rq)t+qr=0q+r=B+p2rq=C/pqr=D2r=(B+p2)+Cp(i)2q=(B+p2)Cp(ii)(B+p2)2C2p2=4Dletp2=zz(B+z)24DzC2=0z3+2Bz2+(B24D)zC2=0Findz=p2fromaboveeq.Thenusing(i)&(ii)obtainqandr.Nowwehave(t2+pt+q)(t2pt+r)=0t=p2±p24qort=p2±p24r&x=ta4.
Commented by Tawa1 last updated on 17/Mar/19
God bless you sir,  i look forward for the success sir
Godblessyousir,ilookforwardforthesuccesssir
Commented by ajfour last updated on 17/Mar/19
Or after        t^4 +Bt^2 +Ct+D=0  we let    x=((pt+q)/(t+1))   then    (pt+q)^4 +B(pt+q)^2 (t+1)^2 +         C(pt+q)(t+1)^3 +D(t+1)^4 =0  ⇒     p^4 t^4 +4p^3 qt^3 +6p^2 q^2 t^2 +4pq^3 t+q^4   + B(p^2 t^2 +2pqt+q^2 )(t^2 +2t+1)+    C(pt+q)(t^3 +3t^2 +3t+1)+    D(t^4 +4t^3 +6t^2 +4t+1)=0  ⇒  __________________________     (p^4 +Bp^2 +Cp+D)t^4 +      (4p^3 q+2Bp^2 +2Bpq+3Cp+Cq+4D)t^3   +(6p^2 q^2 +Bp^2 +4Bpq+Bq^2 +3Cp+3Cq+6D)t^2   +(4pq^3 +2Bpq+2Bq^2 +Cp+3Cq+4D)t  +(q^4 +Bq^2 +Cq+D)=0  __________________________  & if we let coefficients of t^3  & t  to be zero we obtain a quadratic  in t^2 .   4p^3 q+2Bp^2 +2Bpq+3Cp+Cq+4D=0   4pq^3 +2Bpq+2Bq^2 +Cp+3Cq+4D=0  subtracting we get   4pq(p+q)+2B(p+q)+2C=0  ..(I)  And adding we get  (4pq+2B)(p^2 +q^2 )+4Bpq+        4C(p+q)+8D=0                 ...(II)  Solving this pair  of eqs. (I)&(II),   we′d have reduced a   biquadratic to a quadratic.  rewriting eq. (II)  (4pq+2B)[(p+q)^2 −2pq]+4Bpq         +4C(p+q)+8D=0  ⇒  4C(p+q)+8D=−(4pq+2B)(p+q)^2   using (I) herein  ⇒ 4C(p+q)+8D=2(p+q)[C+B(p+q)]  ⇒ B(p+q)^2 −C(p+q)−4D=0  ⇒   p+q = (C/2)±(√((C^( 2) /4)+4D))  = k      pq = −(B/2)−(C/(2(p+q)))            = −(B/2)−(C/(2k)) = l   p, q are roots of           z^2 −kz+l=0  p, q = (k/2)±(√((k^2 /4)−l))  Now we have     (p^4 +Bp^2 +Cp+D)t^4   +(6p^2 q^2 +Bp^2 +4Bpq+Bq^2 +3Cp+3Cq+6D)t^2   +(q^4 +Bq^2 +Cq+D)=0     which is a quadratic in t^2 ,  and can be solved.  And   x=((pt+q)/(t+1)).                                  ■
Oraftert4+Bt2+Ct+D=0weletx=pt+qt+1then(pt+q)4+B(pt+q)2(t+1)2+C(pt+q)(t+1)3+D(t+1)4=0p4t4+4p3qt3+6p2q2t2+4pq3t+q4+B(p2t2+2pqt+q2)(t2+2t+1)+C(pt+q)(t3+3t2+3t+1)+D(t4+4t3+6t2+4t+1)=0__________________________(p4+Bp2+Cp+D)t4+(4p3q+2Bp2+2Bpq+3Cp+Cq+4D)t3+(6p2q2+Bp2+4Bpq+Bq2+3Cp+3Cq+6D)t2+(4pq3+2Bpq+2Bq2+Cp+3Cq+4D)t+(q4+Bq2+Cq+D)=0__________________________&ifweletcoefficientsoft3&ttobezeroweobtainaquadraticint2.4p3q+2Bp2+2Bpq+3Cp+Cq+4D=04pq3+2Bpq+2Bq2+Cp+3Cq+4D=0subtractingweget4pq(p+q)+2B(p+q)+2C=0..(I)Andaddingweget(4pq+2B)(p2+q2)+4Bpq+4C(p+q)+8D=0(II)Solvingthispairofeqs.(I)&(II),wedhavereducedabiquadratictoaquadratic.rewritingeq.(II)(4pq+2B)[(p+q)22pq]+4Bpq+4C(p+q)+8D=04C(p+q)+8D=(4pq+2B)(p+q)2using(I)herein4C(p+q)+8D=2(p+q)[C+B(p+q)]B(p+q)2C(p+q)4D=0p+q=C2±C24+4D=kpq=B2C2(p+q)=B2C2k=lp,qarerootsofz2kz+l=0p,q=k2±k24lNowwehave(p4+Bp2+Cp+D)t4+(6p2q2+Bp2+4Bpq+Bq2+3Cp+3Cq+6D)t2+(q4+Bq2+Cq+D)=0whichisaquadraticint2,andcanbesolved.Andx=pt+qt+1.◼
Commented by Tawa1 last updated on 17/Mar/19
Wow, God bless you sir. I appreciate ...
Wow,Godblessyousir.Iappreciate
Commented by Tawa1 last updated on 17/Mar/19
Sir, please if the power is  5 or higher. can we still deduce.  Thanks for your time sir.
Sir,pleaseifthepoweris5orhigher.canwestilldeduce.Thanksforyourtimesir.

Leave a Reply

Your email address will not be published. Required fields are marked *