Menu Close

please-prove-0-1-1-1-x-log-x-1-x-dx-4log-2-




Question Number 109838 by mnjuly1970 last updated on 25/Aug/20
        please prove:::  ∫_0 ^( 1) (1/( (√(1−x))))log((x/(1−x)))dx =4log(2)
pleaseprove:::0111xlog(x1x)dx=4log(2)
Answered by mathmax by abdo last updated on 25/Aug/20
I =∫_0 ^1  (1/( (√(1−x))))ln((x/(1−x)))dx   changement (√(1−x))=t give 1−x =t^2  ⇒  I =−∫_0 ^1  (1/t)ln(((1−t^2 )/t^2 ))(−2t)dt =2 ∫_0 ^1  (ln(1−t^2 )−2ln(t))dt  =2∫_0 ^1  ln(1−t^2 )dt −4∫_0 ^1  ln(t)dt  we have   ∫_0 ^1  ln(t)dt =[tlnt−t]_0 ^1  =−1  ∫_0 ^1 ln(1−t^2 )dt =_(by pafts)     [(t−1) ln(1−t^2 )]_0 ^1 −∫_0 ^1 (t−1)×((−2t)/(1−t^2 ))dt  =−2 ∫_0 ^1  ((t(1−t))/(1−t^2 ))dt =−2∫_0 ^1  (t/(1+t)) dt =−2∫_0 ^1  ((1+t−1)/(1+t)) dt  =−2 +2ln(2) ⇒I =−4 +4ln(2)−4(−1) =4ln(2) ⇒  ★ ∫_0 ^1  (1/( (√(1−x))))ln((x/(1−x)))dx =4ln(2)★
I=0111xln(x1x)dxchangement1x=tgive1x=t2I=011tln(1t2t2)(2t)dt=201(ln(1t2)2ln(t))dt=201ln(1t2)dt401ln(t)dtwehave01ln(t)dt=[tlntt]01=101ln(1t2)dt=bypafts[(t1)ln(1t2)]0101(t1)×2t1t2dt=201t(1t)1t2dt=201t1+tdt=2011+t11+tdt=2+2ln(2)I=4+4ln(2)4(1)=4ln(2)0111xln(x1x)dx=4ln(2)
Commented by mnjuly1970 last updated on 26/Aug/20
thank you so much .  excellent^∞
thankyousomuch.excellent
Commented by mathmax by abdo last updated on 27/Aug/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *