Menu Close

please-prove-1-important-lim-z-1-z-1-z-1-euler-constant-2-important-0-cos-x-1-1-x-2-dx-x-




Question Number 108738 by mnjuly1970 last updated on 19/Aug/20
        please:    ^∗ prove^∗ ::::       1.^(important)     lim_(z→1) (ζ (z) −(1/(z−1)) )= γ   (euler constant)      2.  ^(important)   ∫_0 ^( ∞) (cos(x)−(1/(1+x^2 )))(dx/x) =− γ                         .....M.N.....
$$\:\:\:\:\:\:\:\:{please}:\:\:\:\:\:^{\ast} \mathrm{prove}^{\ast} :::: \\ $$$$\:\:\:\:\:\mathrm{1}.^{\mathrm{important}} \:\:\:\:\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{1}} \left(\zeta\:\left(\mathrm{z}\right)\:−\frac{\mathrm{1}}{\mathrm{z}−\mathrm{1}}\:\right)=\:\gamma\:\:\:\left(\mathrm{euler}\:\mathrm{constant}\right) \\ $$$$\:\:\:\:\mathrm{2}.\:\overset{\mathrm{important}} {\:}\:\:\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{cos}\left(\mathrm{x}\right)−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\frac{\mathrm{dx}}{\mathrm{x}}\:=−\:\gamma \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\mathscr{M}.\mathscr{N}….. \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *