Menu Close

please-prove-it-0-e-ax-2-cos-bx-dx-1-2-pi-a-e-b-2-4a-




Question Number 97489 by ali_golmakani last updated on 08/Jun/20
please  prove it    ∫_0 ^∞ e^(−ax^2 ) cos bx  dx= (1/2)(√(π/a)).e^(−(b^2 /(4a)))
$${please}\:\:{prove}\:{it} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}^{\mathrm{2}} } \mathrm{cos}\:{bx}\:\:{dx}=\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\pi}{{a}}}.{e}^{−\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}}} \\ $$
Answered by smridha last updated on 08/Jun/20
=(1/2)Re∫_(−∞) ^∞ e^(−ax^2 +ibx) dx  =(1/2)Re(√(𝛑/a)).e^(((−ib)^2 )/(4a))  =(1/2)(√(𝛑/a)).e^(−(b^2 /(4a)))   we know ∫_(−∞) ^(+∞) e^(−𝛂x^2 +𝛃x)  dx=(√(𝛑/𝛂)).e^(𝛃^2 /(4𝛂))   this is one of the results used  in quantum mechanics for finding  the probality density of particle.  i also prove the result...which   i directly used here.
$$=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{R}}{e}\int_{−\infty} ^{\infty} \boldsymbol{{e}}^{−\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{ibx}}} \boldsymbol{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{Re}\sqrt{\frac{\boldsymbol{\pi}}{\boldsymbol{{a}}}}.\boldsymbol{{e}}^{\frac{\left(−\boldsymbol{{ib}}\right)^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{a}}}} \:=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\boldsymbol{\pi}}{{a}}}.{e}^{−\frac{\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{a}}}} \\ $$$$\boldsymbol{{we}}\:\boldsymbol{{know}}\:\int_{−\infty} ^{+\infty} \boldsymbol{{e}}^{−\boldsymbol{\alpha{x}}^{\mathrm{2}} +\boldsymbol{\beta{x}}} \:\boldsymbol{{dx}}=\sqrt{\frac{\boldsymbol{\pi}}{\boldsymbol{\alpha}}}.{e}^{\frac{\boldsymbol{\beta}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{\alpha}}} \\ $$$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{one}}\:\boldsymbol{{of}}\:{the}\:\boldsymbol{{results}}\:\boldsymbol{{used}} \\ $$$$\boldsymbol{{in}}\:\boldsymbol{{quantum}}\:\boldsymbol{{mechanics}}\:\boldsymbol{{for}}\:\boldsymbol{{finding}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{probality}}\:\boldsymbol{{density}}\:\boldsymbol{{of}}\:\boldsymbol{{particle}}. \\ $$$$\boldsymbol{{i}}\:\boldsymbol{{also}}\:\boldsymbol{{prove}}\:\boldsymbol{{the}}\:\boldsymbol{{result}}…\boldsymbol{{which}}\: \\ $$$$\boldsymbol{{i}}\:\boldsymbol{{directly}}\:\boldsymbol{{used}}\:\boldsymbol{{here}}. \\ $$$$ \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 08/Jun/20
∫_0 ^∞  e^(−ax^2 ) cos(bx)dx =(1/2)Re(∫_(−∞) ^∞  e^(−ax^2 −ibx)   dx) but  ∫_(−∞) ^(+∞)  e^(−ax^2 −ibx)  dx =∫_(−∞) ^(+∞)  e^(−a( x^2  +2((ib)/(2a))x   +(((ib)/(2a)))^2 −(((ib)/(2a)))^2 ))  dx  =∫_(−∞) ^(+∞)  e^(−a{  (x+((ib)/(2a)))^2 +(b^2 /(4a^2 ))})  dx  = e^(−((b2)/(4a)))  ∫_(−∞) ^(+∞)  e^(−a(x+((ib)/(2a)))^2 ) dx  =_(x+((ib)/(2a))=t)      e^(−(b^2 /(4a)))  ∫_(−∞) ^(+∞)  e^(−at^2 ) dt =_((√a)t =u)    e^(−(b^2 /(4a)))  ∫_(−∞) ^(+∞)  e^(−u^2 ) (du/( (√a)))  =((√π)/(2(√a))) e^(−(b^2 /(4a)))   =(1/2)(√(π/a))e^(−(b^2 /(4a)))        (a>0)
$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{ax}^{\mathrm{2}} } \mathrm{cos}\left(\mathrm{bx}\right)\mathrm{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Re}\left(\int_{−\infty} ^{\infty} \:\mathrm{e}^{−\mathrm{ax}^{\mathrm{2}} −\mathrm{ibx}} \:\:\mathrm{dx}\right)\:\mathrm{but} \\ $$$$\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{ax}^{\mathrm{2}} −\mathrm{ibx}} \:\mathrm{dx}\:=\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{a}\left(\:\mathrm{x}^{\mathrm{2}} \:+\mathrm{2}\frac{\mathrm{ib}}{\mathrm{2a}}\mathrm{x}\:\:\:+\left(\frac{\mathrm{ib}}{\mathrm{2a}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{ib}}{\mathrm{2a}}\right)^{\mathrm{2}} \right)} \:\mathrm{dx} \\ $$$$=\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{a}\left\{\:\:\left(\mathrm{x}+\frac{\mathrm{ib}}{\mathrm{2a}}\right)^{\mathrm{2}} +\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4a}^{\mathrm{2}} }\right\}} \:\mathrm{dx}\:\:=\:\mathrm{e}^{−\frac{\mathrm{b2}}{\mathrm{4a}}} \:\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{a}\left(\mathrm{x}+\frac{\mathrm{ib}}{\mathrm{2a}}\right)^{\mathrm{2}} } \mathrm{dx} \\ $$$$=_{\mathrm{x}+\frac{\mathrm{ib}}{\mathrm{2a}}=\mathrm{t}} \:\:\:\:\:\mathrm{e}^{−\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4a}}} \:\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{at}^{\mathrm{2}} } \mathrm{dt}\:=_{\sqrt{\mathrm{a}}\mathrm{t}\:=\mathrm{u}} \:\:\:\mathrm{e}^{−\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4a}}} \:\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{u}^{\mathrm{2}} } \frac{\mathrm{du}}{\:\sqrt{\mathrm{a}}} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{\mathrm{a}}}\:\mathrm{e}^{−\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4a}}} \:\:=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\pi}{\mathrm{a}}}\mathrm{e}^{−\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4a}}} \:\:\:\:\:\:\:\left(\mathrm{a}>\mathrm{0}\right) \\ $$
Commented by ali_golmakani last updated on 08/Jun/20
thank you dear friend
$${thank}\:{you}\:{dear}\:{friend} \\ $$
Commented by mathmax by abdo last updated on 08/Jun/20
you are welcome friend
$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{friend} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *