Menu Close

please-prove-it-0-e-ax-2-cos-bx-dx-1-2-pi-a-e-b-2-4a-




Question Number 97489 by ali_golmakani last updated on 08/Jun/20
please  prove it    ∫_0 ^∞ e^(−ax^2 ) cos bx  dx= (1/2)(√(π/a)).e^(−(b^2 /(4a)))
pleaseproveit0eax2cosbxdx=12πa.eb24a
Answered by smridha last updated on 08/Jun/20
=(1/2)Re∫_(−∞) ^∞ e^(−ax^2 +ibx) dx  =(1/2)Re(√(𝛑/a)).e^(((−ib)^2 )/(4a))  =(1/2)(√(𝛑/a)).e^(−(b^2 /(4a)))   we know ∫_(−∞) ^(+∞) e^(−𝛂x^2 +𝛃x)  dx=(√(𝛑/𝛂)).e^(𝛃^2 /(4𝛂))   this is one of the results used  in quantum mechanics for finding  the probality density of particle.  i also prove the result...which   i directly used here.
=12Reeax2+ibxdx=12Reπa.e(ib)24a=12πa.eb24aweknow+eαx2+βxdx=πα.eβ24αthisisoneoftheresultsusedinquantummechanicsforfindingtheprobalitydensityofparticle.ialsoprovetheresultwhichidirectlyusedhere.
Answered by mathmax by abdo last updated on 08/Jun/20
∫_0 ^∞  e^(−ax^2 ) cos(bx)dx =(1/2)Re(∫_(−∞) ^∞  e^(−ax^2 −ibx)   dx) but  ∫_(−∞) ^(+∞)  e^(−ax^2 −ibx)  dx =∫_(−∞) ^(+∞)  e^(−a( x^2  +2((ib)/(2a))x   +(((ib)/(2a)))^2 −(((ib)/(2a)))^2 ))  dx  =∫_(−∞) ^(+∞)  e^(−a{  (x+((ib)/(2a)))^2 +(b^2 /(4a^2 ))})  dx  = e^(−((b2)/(4a)))  ∫_(−∞) ^(+∞)  e^(−a(x+((ib)/(2a)))^2 ) dx  =_(x+((ib)/(2a))=t)      e^(−(b^2 /(4a)))  ∫_(−∞) ^(+∞)  e^(−at^2 ) dt =_((√a)t =u)    e^(−(b^2 /(4a)))  ∫_(−∞) ^(+∞)  e^(−u^2 ) (du/( (√a)))  =((√π)/(2(√a))) e^(−(b^2 /(4a)))   =(1/2)(√(π/a))e^(−(b^2 /(4a)))        (a>0)
0eax2cos(bx)dx=12Re(eax2ibxdx)but+eax2ibxdx=+ea(x2+2ib2ax+(ib2a)2(ib2a)2)dx=+ea{(x+ib2a)2+b24a2}dx=eb24a+ea(x+ib2a)2dx=x+ib2a=teb24a+eat2dt=at=ueb24a+eu2dua=π2aeb24a=12πaeb24a(a>0)
Commented by ali_golmakani last updated on 08/Jun/20
thank you dear friend
thankyoudearfriend
Commented by mathmax by abdo last updated on 08/Jun/20
you are welcome friend
youarewelcomefriend

Leave a Reply

Your email address will not be published. Required fields are marked *