Menu Close

please-prove-that-0-pi-2-log-sinx-dx-pi-2-log2-or-0-pi-2-log-cosx-dx-pi-2-log2-




Question Number 24852 by nnnavendu last updated on 27/Nov/17
please prove that∫_0 ^(π/2) log(sinx)dx=−(π/2)log2                                    or  ∫_0 ^((π  )/2) log(cosx)dx=−(π/2)log2
pleaseprovethat0π2log(sinx)dx=π2log2or0π2log(cosx)dx=π2log2
Commented by Tinku Tara last updated on 28/Nov/17
sin(x)=cos ((π/2)−x)  ⇒∫_0 ^( π/2) log (cos x)  substitute  u=(π/2)−x⇒x=0,u=(π/2),x=(π/2),u=0  du=−dx  ∫_0 ^( π/2) log (cos x)=−∫_(π/2) ^0 log (sin u)du  =∫_0 ^( π/2) log (sin u)du  ∫_0 ^( π/2) log (sinx) dx=∫_0 ^(π/2) log (cos x) dx=I  2I=∫_0 ^(π/2) [log (sin x)+log (cos x)]dx  =∫_0 ^( π/2) log ((sin 2x)/2)dx  =∫_0 ^(π/2) log (sin 2x)dx−∫_0 ^(π/2) ln 2dx  ∫_0 ^(π/2) log (sin 2x)dx  2x=u⇒dx=du/2  limits change to 0 to π  =(1/2)∫_0 ^π log (sin u)du−(π/2)ln 2  =(1/2)[∫_0 ^(π/2) log (sin u)du+∫_(π/2) ^π log (sin u)du]−(π/2)ln 2  =(1/2)[I+∫_(π/2) ^π log (sin u)du]−(π/2)ln 2  t=u−(π/2)⇒u=(π/2)+t⇒sin u=cos t  dt=du, limits change to 0 to (π/2)  =(1/2)[I+∫_0 ^(π/2) log (cos t)dt]−(π/2)ln 2  2I=(1/2)[I+I]−(π/2)ln 2  I=−(π/2)ln 2
sin(x)=cos(π2x)0π/2log(cosx)substituteu=π2xx=0,u=π2,x=π2,u=0du=dx0π/2log(cosx)=π/20log(sinu)du=0π/2log(sinu)du0π/2log(sinx)dx=0π/2log(cosx)dx=I2I=0π/2[log(sinx)+log(cosx)]dx=0π/2logsin2x2dx=0π/2log(sin2x)dx0π/2ln2dx0π/2log(sin2x)dx2x=udx=du/2limitschangeto0toπ=120πlog(sinu)duπ2ln2=12[0π/2log(sinu)du+π/2πlog(sinu)du]π2ln2=12[I+π/2πlog(sinu)du]π2ln2t=uπ2u=π2+tsinu=costdt=du,limitschangeto0toπ2=12[I+0π/2log(cost)dt]π2ln22I=12[I+I]π2ln2I=π2ln2

Leave a Reply

Your email address will not be published. Required fields are marked *