Menu Close

please-solve-0-pi-4-tan-9-x-dx-




Question Number 116196 by mnjuly1970 last updated on 01/Oct/20
     please solve :          ∫_0 ^( (π/4)) tan^9 (x)dx =???
pleasesolve:0π4tan9(x)dx=???
Answered by mindispower last updated on 01/Oct/20
let  u_n =∫_0 ^(π/4) tg^n (x)dx  U_(n+2) +U_n =∫_0 ^(π/4) tg^n (x)dx+∫_0 ^(π/4) tg^(n+2) (x)dx  =∫_0 ^(π/4) tg^n (x)(1+tg^2 (x))dx=∫_0 ^(π/4) tg^n (x)d(tg(x))  =[((tg^(n+1) (x))/(n+1))]_0 ^(π/4) =(1/(n+1))  ⇒U_(n+2) =(1/(n+1))−U_n   U_0 =(π/4),U_1 =∫_0 ^(π/4) tg(x)dx=[−ln(cos(x))]_0 ^(π/4)   =ln((√2))  U_3 =−U_1 +(1/2)  U_5 =−U_3 +(1/4)  U_7 =−U_5 +(1/6)  U_9 =−U_7 +(1/8)  =(1/8)−(1/6)+(1/4)−(1/2)+ln((√2))  =((3−4+6−12)/(24))+ln((√2))  =((−7+12ln(2))/(24))
letun=0π4tgn(x)dxUn+2+Un=0π4tgn(x)dx+0π4tgn+2(x)dx=0π4tgn(x)(1+tg2(x))dx=0π4tgn(x)d(tg(x))=[tgn+1(x)n+1]0π4=1n+1Un+2=1n+1UnU0=π4,U1=0π4tg(x)dx=[ln(cos(x))]0π4=ln(2)U3=U1+12U5=U3+14U7=U5+16U9=U7+18=1816+1412+ln(2)=34+61224+ln(2)=7+12ln(2)24
Commented by mnjuly1970 last updated on 01/Oct/20
thank you sir..
thankyousir..
Answered by MJS_new last updated on 01/Oct/20
∫tan^9  x dx=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(t^9 /(t^2 +1))dt=∫((t/(t^2 +1))+t^7 −t^5 +t^3 −t)dt=  =(1/2)ln (t^2 +1) +(t^8 /8)−(t^6 /6)+(t^4 /4)−(t^2 /2)  ⇒  answer is (1/2)ln 2 −(7/(24))
tan9xdx=[t=tanxdx=dtt2+1]=t9t2+1dt=(tt2+1+t7t5+t3t)dt==12ln(t2+1)+t88t66+t44t22answeris12ln2724
Commented by mnjuly1970 last updated on 01/Oct/20
grateful..
grateful..
Answered by mathmax by abdo last updated on 01/Oct/20
let u_n =∫_0 ^(π/4)  tan^(2n+1) xdx ⇒u_n =∫_0 ^(π/4)  tan^(2n−1) x(1+ tan^2 x−1) dx  =∫_0 ^(π/4) tan^(2n−1) (1+tan^2 x)dx−u_(n−1)   we hsve  ∫_0 ^(π/4) (1+tan^2 x)^(2n−1) dx =[(1/(2n))tan^(2n) x]_0 ^(π/4)  =(1/(2n)) ⇒u_n =(1/(2n))−u_(n−1)  ⇒  u_n +u_(n−1 ) =(1/(2n)) ⇒Σ_(k=1) ^n (−1)^k (u_k +u_(k−1) ) =(1/2)Σ_(k=1) ^n  (((−1)^k )/k) ⇒  −(u_1 +u_0 )+(u_2 +u_1 )+...(−1)^(n−1) (u_(n−1) +u_(n−2) )+(−1)^n (u_n +u_(n−1) )  =(1/2)Σ_(k=1) ^n  (((−1)^k )/k) ⇒−u_0  +(−1)^n  u_n =(1/2)Σ_(k=1) ^n  (((−1)^k )/k) ⇒  (−1)^n  u_n =u_0 +(1/2)Σ_(k=1) ^n  (((−1)^k )/k)  u_0 =∫_0 ^(π/4)  ((sinx)/(cosx))dx =[−ln∣cosx∣]_0 ^(π/4)  =−ln((1/( (√2)))) =(1/2)ln(2) ⇒  (−1)^n  u_n =(1/2)ln(2)+(1/2)Σ_(k=1) ^n  (((−1)^k )/k) ⇒  u_n =∫_0 ^(π/4) tan^(2n+1) x dx =(−1)^n {((ln2)/2) +(1/2)Σ_(k=1) ^n  (((−1)^k )/k)}  n=4 ⇒∫_0 ^(π/4)  tan^9 xdx=((ln2)/2) +(1/2)Σ_(k=1) ^4  (((−1)^k )/k)  =((ln2)/2) +(1/2){−1+(1/2)−(1/3) +(1/4)} =((ln2)/2) +(1/2){−(4/3) +(3/4)}  =((ln2)/2) +(1/2)(((−7)/(12))) =((ln2)/2)−(7/(24))
letun=0π4tan2n+1xdxun=0π4tan2n1x(1+tan2x1)dx=0π4tan2n1(1+tan2x)dxun1wehsve0π4(1+tan2x)2n1dx=[12ntan2nx]0π4=12nun=12nun1un+un1=12nk=1n(1)k(uk+uk1)=12k=1n(1)kk(u1+u0)+(u2+u1)+(1)n1(un1+un2)+(1)n(un+un1)=12k=1n(1)kku0+(1)nun=12k=1n(1)kk(1)nun=u0+12k=1n(1)kku0=0π4sinxcosxdx=[lncosx]0π4=ln(12)=12ln(2)(1)nun=12ln(2)+12k=1n(1)kkun=0π4tan2n+1xdx=(1)n{ln22+12k=1n(1)kk}n=40π4tan9xdx=ln22+12k=14(1)kk=ln22+12{1+1213+14}=ln22+12{43+34}=ln22+12(712)=ln22724
Answered by Dwaipayan Shikari last updated on 01/Oct/20
∫_0 ^(π/4) ((sin^9 x)/(cos^9 x))dx=−∫_0 ^(π/4) ((sin^8 x(−sinx))/(cos^9 x))dx  −∫_1 ^(1/( (√2))) (((1−t^2 )^4 )/t^9 )dt=∫_(1/( (√2))) ^1 (1/t^9 )−(4/t^7 )+(6/t^5 )−(4/t^3 )+(1/t)  =[−(1/(8t^(8 ) ))+(2/(3t^6 ))−(3/(2t^4 ))+(2/t^2 )+log(t)]_(1/( (√2))) ^1 =log((√2))−(7/(24))
0π4sin9xcos9xdx=0π4sin8x(sinx)cos9xdx112(1t2)4t9dt=1211t94t7+6t54t3+1t=[18t8+23t632t4+2t2+log(t)]121=log(2)724
Answered by maths mind last updated on 01/Oct/20
∫_0 ^(π/4) tg^a (x)dx=f(a),a∈C  Re(a)≥0  tg(x)=t⇒f(a)=∫_0 ^1 (t^a /(1+t^2 ))dt=∫_0 ^1 Σ_(m≥0) (−t^2 )^m t^a dt  =Σ_(m≥0) (−1)^m ∫_0 ^1 t^(2m+a) dt  =Σ_(m≥0) (((−1)^m )/(2m+a+1))=Σ_(m≥0) ((1/(4m+a+1))−(1/(4m+a+3)))  =(1/4)Σ_(m≥0) (((((a+3)/4)−((a+1)/4))/((m+((a+1)/4))(m+((a+2)/4)))))=(2/(16)).((Ψ(((a+3)/4))−Ψ(((a+1)/4)))/(((a+3)/4)−((a+1)/4)))  =((Ψ(((a+3)/4))−𝚿(((a+1)/4)))/4)=f(a)  f(9)=((Ψ(((12)/4))−Ψ(((10)/4)))/4)  Ψ(z+1)=Ψ(z)+(1/z)  Ψ(3)=−γ+1+(1/2)=(3/2)−γ  Ψ(((10)/4))=Ψ((5/2))=Ψ((3/2))+(2/3)=(2/3)+2+Ψ((1/2)),Ψ((1/2))=−2ln(2)−γ  Ψ(3)−Ψ((5/2))=(3/2)−γ−(2/3)−2−Ψ((1/2))=(3/2)−γ−(8/3)+2ln(2)+γ  =((−7)/6)+2ln(2)  f(9)=((−7+12ln(2))/(24))=−(7/(24))+((ln(2))/2)
0π4tga(x)dx=f(a),aCRe(a)0tg(x)=tf(a)=01ta1+t2dt=01m0(t2)mtadt=m0(1)m01t2m+adt=m0(1)m2m+a+1=m0(14m+a+114m+a+3)=14m0(a+34a+14(m+a+14)(m+a+24))=216.Ψ(a+34)Ψ(a+14)a+34a+14=Ψ(a+34)Ψ(a+14)4=f(a)f(9)=Ψ(124)Ψ(104)4Ψ(z+1)=Ψ(z)+1zΨ(3)=γ+1+12=32γΨ(104)=Ψ(52)=Ψ(32)+23=23+2+Ψ(12),Ψ(12)=2ln(2)γΨ(3)Ψ(52)=32γ232Ψ(12)=32γ83+2ln(2)+γ=76+2ln(2)f(9)=7+12ln(2)24=724+ln(2)2
Commented by mnjuly1970 last updated on 02/Oct/20
very nice ..thank you so  much....
verynice..thankyousomuch.
Answered by 1549442205PVT last updated on 02/Oct/20
I_9 =∫tan^9 xdx=∫tan^7 x(1+tan^2 x)dx   −∫tan^7 xdx=∫tan^7 xd(tanx)−I_7   =((tan^8 x)/8)−I_7 =((tan^8 x)/8)−((tan^6 x)/6)+((tan^4 x)/4)  −((tan^2 x)/2)+I_1 =((tan^8 x)/8)−((tan^6 x)/6)+((tan^4 x)/4)−((tan^2 x)/2)−lncosx     Hence,∫_0 ^( (π/4)) tan^9 (x)dx =I_9 ∣_0 ^(π/4)   =(1/8)−(1/6)+(1/4)−(1/2)−ln(1/( (√2)))=((−7)/(24))+(1/2)ln2
I9=tan9xdx=tan7x(1+tan2x)dxtan7xdx=tan7xd(tanx)I7=tan8x8I7=tan8x8tan6x6+tan4x4tan2x2+I1=tan8x8tan6x6+tan4x4tan2x2lncosxHence,0π4tan9(x)dx=I90π/4=1816+1412ln12=724+12ln2
Commented by mnjuly1970 last updated on 02/Oct/20
thanks a lot
thanksalot
Commented by 1549442205PVT last updated on 07/Oct/20
You are welcome.
Youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *