Question Number 116196 by mnjuly1970 last updated on 01/Oct/20

Answered by mindispower last updated on 01/Oct/20
![let u_n =∫_0 ^(π/4) tg^n (x)dx U_(n+2) +U_n =∫_0 ^(π/4) tg^n (x)dx+∫_0 ^(π/4) tg^(n+2) (x)dx =∫_0 ^(π/4) tg^n (x)(1+tg^2 (x))dx=∫_0 ^(π/4) tg^n (x)d(tg(x)) =[((tg^(n+1) (x))/(n+1))]_0 ^(π/4) =(1/(n+1)) ⇒U_(n+2) =(1/(n+1))−U_n U_0 =(π/4),U_1 =∫_0 ^(π/4) tg(x)dx=[−ln(cos(x))]_0 ^(π/4) =ln((√2)) U_3 =−U_1 +(1/2) U_5 =−U_3 +(1/4) U_7 =−U_5 +(1/6) U_9 =−U_7 +(1/8) =(1/8)−(1/6)+(1/4)−(1/2)+ln((√2)) =((3−4+6−12)/(24))+ln((√2)) =((−7+12ln(2))/(24))](https://www.tinkutara.com/question/Q116198.png)
Commented by mnjuly1970 last updated on 01/Oct/20

Answered by MJS_new last updated on 01/Oct/20
![∫tan^9 x dx= [t=tan x → dx=(dt/(t^2 +1))] =∫(t^9 /(t^2 +1))dt=∫((t/(t^2 +1))+t^7 −t^5 +t^3 −t)dt= =(1/2)ln (t^2 +1) +(t^8 /8)−(t^6 /6)+(t^4 /4)−(t^2 /2) ⇒ answer is (1/2)ln 2 −(7/(24))](https://www.tinkutara.com/question/Q116199.png)
Commented by mnjuly1970 last updated on 01/Oct/20

Answered by mathmax by abdo last updated on 01/Oct/20
![let u_n =∫_0 ^(π/4) tan^(2n+1) xdx ⇒u_n =∫_0 ^(π/4) tan^(2n−1) x(1+ tan^2 x−1) dx =∫_0 ^(π/4) tan^(2n−1) (1+tan^2 x)dx−u_(n−1) we hsve ∫_0 ^(π/4) (1+tan^2 x)^(2n−1) dx =[(1/(2n))tan^(2n) x]_0 ^(π/4) =(1/(2n)) ⇒u_n =(1/(2n))−u_(n−1) ⇒ u_n +u_(n−1 ) =(1/(2n)) ⇒Σ_(k=1) ^n (−1)^k (u_k +u_(k−1) ) =(1/2)Σ_(k=1) ^n (((−1)^k )/k) ⇒ −(u_1 +u_0 )+(u_2 +u_1 )+...(−1)^(n−1) (u_(n−1) +u_(n−2) )+(−1)^n (u_n +u_(n−1) ) =(1/2)Σ_(k=1) ^n (((−1)^k )/k) ⇒−u_0 +(−1)^n u_n =(1/2)Σ_(k=1) ^n (((−1)^k )/k) ⇒ (−1)^n u_n =u_0 +(1/2)Σ_(k=1) ^n (((−1)^k )/k) u_0 =∫_0 ^(π/4) ((sinx)/(cosx))dx =[−ln∣cosx∣]_0 ^(π/4) =−ln((1/( (√2)))) =(1/2)ln(2) ⇒ (−1)^n u_n =(1/2)ln(2)+(1/2)Σ_(k=1) ^n (((−1)^k )/k) ⇒ u_n =∫_0 ^(π/4) tan^(2n+1) x dx =(−1)^n {((ln2)/2) +(1/2)Σ_(k=1) ^n (((−1)^k )/k)} n=4 ⇒∫_0 ^(π/4) tan^9 xdx=((ln2)/2) +(1/2)Σ_(k=1) ^4 (((−1)^k )/k) =((ln2)/2) +(1/2){−1+(1/2)−(1/3) +(1/4)} =((ln2)/2) +(1/2){−(4/3) +(3/4)} =((ln2)/2) +(1/2)(((−7)/(12))) =((ln2)/2)−(7/(24))](https://www.tinkutara.com/question/Q116207.png)
Answered by Dwaipayan Shikari last updated on 01/Oct/20
![∫_0 ^(π/4) ((sin^9 x)/(cos^9 x))dx=−∫_0 ^(π/4) ((sin^8 x(−sinx))/(cos^9 x))dx −∫_1 ^(1/( (√2))) (((1−t^2 )^4 )/t^9 )dt=∫_(1/( (√2))) ^1 (1/t^9 )−(4/t^7 )+(6/t^5 )−(4/t^3 )+(1/t) =[−(1/(8t^(8 ) ))+(2/(3t^6 ))−(3/(2t^4 ))+(2/t^2 )+log(t)]_(1/( (√2))) ^1 =log((√2))−(7/(24))](https://www.tinkutara.com/question/Q116208.png)
Answered by maths mind last updated on 01/Oct/20

Commented by mnjuly1970 last updated on 02/Oct/20

Answered by 1549442205PVT last updated on 02/Oct/20

Commented by mnjuly1970 last updated on 02/Oct/20

Commented by 1549442205PVT last updated on 07/Oct/20
