Menu Close

Please-what-does-the-2-on-the-C-mean-C-1-2-2-C-2-2-3-C-3-2-n-C-n-2-2n-1-n-1-2-Does-the-2-on-C-mean-square-I-mean-C-1-2-2-C-2-




Question Number 61111 by Tawa1 last updated on 29/May/19
Please what does the 2 on the C mean.          C_1 ^2  + 2 C_2 ^2  + 3 C_3 ^2  + ... + n C_n ^2     =   (((2n − 1)!)/([(n − 1)!]^2 ))  Does the 2 on C mean square ??      I mean:      (C_1 )^2  + 2(C_2 )^2  + 3(C_3 )^2  + ... + n (C_n )^2   which is also              ( ^n C_1 )^2  + 2( ^n C_2 )^2  + 3( ^n C_3 )^2  + ... + n ( ^n C_n )^2     I just want to know what the 2 on C represent .  Thanks.        C_1 ^2  + 2 C_2 ^2  + 3 C_3 ^2  + ... + n C_n ^2     =   (((2n − 1)!)/([(n − 1)!]^2 ))
Pleasewhatdoesthe2ontheCmean.C12+2C22+3C32++nCn2=(2n1)![(n1)!]2Doesthe2onCmeansquare??Imean:(C1)2+2(C2)2+3(C3)2++n(Cn)2whichisalso(nC1)2+2(nC2)2+3(nC3)2++n(nCn)2Ijustwanttoknowwhatthe2onCrepresent.Thanks.C12+2C22+3C32++nCn2=(2n1)![(n1)!]2
Commented by perlman last updated on 29/May/19
C_n ^(k ) =((n!)/(k!(n−k)!))  withe n!=n(n−1)....2×1  mor generaly     x!=Γ(x+1) gamma function defind for all z∈C withe/Re(z)>0  Γ(x+1)=xΓ(x) and  Γ(1)=1
Cnk=n!k!(nk)!withen!=n(n1).2×1morgeneralyx!=Γ(x+1)gammafunctiondefindforallzCwithe/Re(z)>0Γ(x+1)=xΓ(x)andΓ(1)=1
Commented by Tawa1 last updated on 29/May/19
But sir,  how come we have    3. C_3 ^2   which is    3. ^2 C_3    is this correct
Butsir,howcomewehave3.C32whichis3.2C3isthiscorrect
Answered by tanmay last updated on 29/May/19
(1+x)^n =c_0 +c_1 x+c_2 x^2 +...+c_n x^n   (d/dx)[(1+x)^n ]=c_1 +2c_2 x+3c_3 x^2 +...+nc_n x^(n−1)   x×n(1+x)^(n−1) =c_1 x+2c_2 x^2 +3c_3 x^3 +..+nc_n x^n   now (1+(1/x))^n =c_0 +(c_1 /x)+(c_2 /x^2 )+...+(c_n /x^n )  now  (c_1 x+2c_2 x^2 +..+nc_n x^(n−1) )×(c_0 +(c_1 /x)+(c_2 /x^2 )+..+(c_n /x^n ))  take the terms independent of x  c_1 ^2 +2c_2 ^2 +3c_3 ^2 +...+nc_n ^2   left hand side   x×n(1+x)^(n−1) ×(1+(1/x))^n   =x×n(1+x^ )^(n−1) ×(((1+x)^n )/x^n )  =n×x^(1−n) ×(1+x)^(2n−1)   let (r+1)th term of (1+x)^(2n−1)  contains  x^(n−1)    so when multiplied by x^(1−n)   result is  independent of x  2n−1_(C_r ×(x)^r )   x^r =x^(n−1)    so r=n−1  now  n×2n−1_C_(n−1)  ×x^(n−1) ×x^(1−n)   n×(((2n−1)!)/((n−1)!×n!))  =(((2n−1)!)/((n−1)!(n−1)!))  so  c_1 ^2 +2c_2 ^2 +3c_3 ^2 +...+nc_n ^2 =(((2n−1)!)/((n−1)!×(n−1)!))  hence proved
(1+x)n=c0+c1x+c2x2++cnxnddx[(1+x)n]=c1+2c2x+3c3x2++ncnxn1x×n(1+x)n1=c1x+2c2x2+3c3x3+..+ncnxnnow(1+1x)n=c0+c1x+c2x2++cnxnnow(c1x+2c2x2+..+ncnxn1)×(c0+c1x+c2x2+..+cnxn)takethetermsindependentofxc12+2c22+3c32++ncn2lefthandsidex×n(1+x)n1×(1+1x)n=x×n(1+x)n1×(1+x)nxn=n×x1n×(1+x)2n1let(r+1)thtermof(1+x)2n1containsxn1sowhenmultipliedbyx1nresultisindependentofx2n1Cr×(x)rxr=xn1sor=n1nown×2n1Cn1×xn1×x1nn×(2n1)!(n1)!×n!=(2n1)!(n1)!(n1)!soc12+2c22+3c32++ncn2=(2n1)!(n1)!×(n1)!henceproved
Commented by Tawa1 last updated on 29/May/19
Wow, God bless you sir.  But that  C^2 ,   is the 2 square  or  another way to write    ^2 C
Wow,Godblessyousir.ButthatC2,isthe2squareoranotherwaytowrite2C
Commented by Tawa1 last updated on 29/May/19
Ohh, i get sir.  It is square.  C_1  × C_1   =  C_1 ^2
Ohh,igetsir.Itissquare.C1×C1=C12
Commented by tanmay last updated on 29/May/19
yes c_1 ×c_1 =(c_1 )^2   square  i have avoided (.)  just written as c_1 ^2
yesc1×c1=(c1)2squareihaveavoided(.)justwrittenasc12
Commented by Tawa1 last updated on 29/May/19
Ohh, great.  Thanks sir. I appreciate
Ohh,great.Thankssir.Iappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *