Menu Close

please-what-is-the-fomula-to-determinate-the-equations-of-bissectors-in-triangle-




Question Number 78820 by mathocean1 last updated on 20/Jan/20
please what is the fomula to   determinate the equations of   bissectors in triangle?
$$\mathrm{please}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{fomula}\:\mathrm{to}\: \\ $$$$\mathrm{determinate}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\: \\ $$$$\mathrm{bissectors}\:\mathrm{in}\:\mathrm{triangle}? \\ $$
Answered by MJS last updated on 21/Jan/20
bisector between 2 lines  l_1 : y=a_1 x+c_1   l_2 : y=a_2 x+c_2   intersection:  I= ((((c_2 −c_1 )/(a_1 −a_2 ))),(((a_1 c_2 −a_2 c_1 )/(a_1 −a_2 ))) )  direction vectors:  v_1 = ((1),(a_1 ) ); v_2 = ((1),(a_2 ) )  normalized:  v_1 = (((1/( (√(1+a_1 ^2 ))))),((a_1 /( (√(1+a_1 ^2 ))))) ) ; v_2 = (((1/( (√(1+a_2 ^2 ))))),((a_1 /( (√(1+a_2 ^2 ))))) )  direction vectors of bisectors  v_(b1) =v_1 +v_2 = ((p),(q) )  v_(b2) = ((q),((−p)) )  bisectors  l_(b1) : X=I+tv_(b1)   l_(b2) : X=I+tv_(b2)
$$\mathrm{bisector}\:\mathrm{between}\:\mathrm{2}\:\mathrm{lines} \\ $$$${l}_{\mathrm{1}} :\:{y}={a}_{\mathrm{1}} {x}+{c}_{\mathrm{1}} \\ $$$${l}_{\mathrm{2}} :\:{y}={a}_{\mathrm{2}} {x}+{c}_{\mathrm{2}} \\ $$$$\mathrm{intersection}: \\ $$$${I}=\begin{pmatrix}{\frac{{c}_{\mathrm{2}} −{c}_{\mathrm{1}} }{{a}_{\mathrm{1}} −{a}_{\mathrm{2}} }}\\{\frac{{a}_{\mathrm{1}} {c}_{\mathrm{2}} −{a}_{\mathrm{2}} {c}_{\mathrm{1}} }{{a}_{\mathrm{1}} −{a}_{\mathrm{2}} }}\end{pmatrix} \\ $$$$\mathrm{direction}\:\mathrm{vectors}: \\ $$$${v}_{\mathrm{1}} =\begin{pmatrix}{\mathrm{1}}\\{{a}_{\mathrm{1}} }\end{pmatrix};\:{v}_{\mathrm{2}} =\begin{pmatrix}{\mathrm{1}}\\{{a}_{\mathrm{2}} }\end{pmatrix} \\ $$$$\mathrm{normalized}: \\ $$$${v}_{\mathrm{1}} =\begin{pmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}_{\mathrm{1}} ^{\mathrm{2}} }}}\\{\frac{{a}_{\mathrm{1}} }{\:\sqrt{\mathrm{1}+{a}_{\mathrm{1}} ^{\mathrm{2}} }}}\end{pmatrix}\:;\:{v}_{\mathrm{2}} =\begin{pmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}_{\mathrm{2}} ^{\mathrm{2}} }}}\\{\frac{{a}_{\mathrm{1}} }{\:\sqrt{\mathrm{1}+{a}_{\mathrm{2}} ^{\mathrm{2}} }}}\end{pmatrix} \\ $$$$\mathrm{direction}\:\mathrm{vectors}\:\mathrm{of}\:\mathrm{bisectors} \\ $$$${v}_{{b}\mathrm{1}} ={v}_{\mathrm{1}} +{v}_{\mathrm{2}} =\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix} \\ $$$${v}_{{b}\mathrm{2}} =\begin{pmatrix}{{q}}\\{−{p}}\end{pmatrix} \\ $$$$\mathrm{bisectors} \\ $$$${l}_{{b}\mathrm{1}} :\:{X}={I}+{tv}_{{b}\mathrm{1}} \\ $$$${l}_{{b}\mathrm{2}} :\:{X}={I}+{tv}_{{b}\mathrm{2}} \\ $$
Commented by jagoll last updated on 21/Jan/20
good sir
$$\mathrm{good}\:\mathrm{sir} \\ $$
Commented by mathocean1 last updated on 21/Jan/20
hello  is it the same thing of   bissectrice of angles?
$$\mathrm{hello} \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{the}\:\mathrm{same}\:\mathrm{thing}\:\mathrm{of}\: \\ $$$$\mathrm{bissectrice}\:\mathrm{of}\:\mathrm{angles}? \\ $$
Commented by MJS last updated on 21/Jan/20
of course. what is an angle without lines?
$$\mathrm{of}\:\mathrm{course}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{without}\:\mathrm{lines}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *