Menu Close

pls-check-the-question-below-




Question Number 86454 by redmiiuser last updated on 28/Mar/20
 pls check the   question below
plscheckthequestionbelow
Answered by redmiiuser last updated on 28/Mar/20
∫1/(√)(1+x^3 ).dx  (1+x^3 )^((−1/2))   =1+(−1/2)x^3 +(−1/2)(−3/2)x^6 /2!+(−1/2)(−3/2)(−5/2)x^9 /3!+(−1/2)(−3/2)(−5/2)(−7/2)/4! x^(12) +...    therefore  (1+x^3 )^((−1/2))   =Σ_(n=0) ^∞ (((−1)^n .(2n)!.(x^3 )^n )/((2^(2n) .(n!)^2 )))  ∴∫(1+x^3 )^((−1/2)) .dx  =∫Σ_(n=0) ^∞ (((−1)^n .(2n)!.(x^3 )^n )/(2^(2n) .(n!)^2 )) .dx  =Σ_(n=0) ^∞ (((−1)^n .(2n)!.(x)^(3n+1) )/((3n+1).(2^(2n) ).(n!)^2 ))
1/(1+x3).dx(1+x3)(1/2)=1+(1/2)x3+(1/2)(3/2)x6/2!+(1/2)(3/2)(5/2)x9/3!+(1/2)(3/2)(5/2)(7/2)/4!x12+therefore(1+x3)(1/2)=n=0(((1)n.(2n)!.(x3)n)/((22n.(n!)2)))(1+x3)(1/2).dx=n=0(((1)n.(2n)!.(x3)n)/(22n.(n!)2)).dx=n=0(((1)n.(2n)!.(x)3n+1)/((3n+1).(22n).(n!)2))
Commented by redmiiuser last updated on 29/Mar/20
can anyone comment  whether the above  process is correct or  wrong.
cananyonecommentwhethertheaboveprocessiscorrectorwrong.
Commented by redmiiuser last updated on 29/Mar/20
mr.Tanmay can you  help me in the  above problem pls.
mr.Tanmaycanyouhelpmeintheaboveproblempls.
Commented by TANMAY PANACEA. last updated on 29/Mar/20
∫(dx/( (√(1+x^3 )) ))  x^3 =tan^2 α  x=(tanα)^(2/3) →dx=(2/3)×(tanα)^((2/3)−1) ×sec^2 α dα  ∫((2(tanα)^((−1)/3) ×sec^2 α×dα)/(3×(1+tan^2 α)^(1/2) ))  (2/3)∫((secα dα)/((tanα)^(1/3) ))  (2/3)∫(dα/((sinα)^(1/3) (cosα)^(2/3) ))
dx1+x3x3=tan2αx=(tanα)23dx=23×(tanα)231×sec2αdα2(tanα)13×sec2α×dα3×(1+tan2α)1223secαdα(tanα)1323dα(sinα)13(cosα)23

Leave a Reply

Your email address will not be published. Required fields are marked *